Russian Physics Journal

, Volume 61, Issue 6, pp 1117–1120 | Cite as

On One Proof of the Uniqueness of the Stokes Hydrodynamic Solution

  • S. O. GladkovEmail author

Thanks to found radial solutions of polynomial partial differential equations, the uniqueness of the Stokes hydrodynamic solution has been proven for the problem of calculating the resistance force of a sphere in a viscous medium.


Stokes force stationary flow Navier–Stokes equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Butterworth-Heinemann, London (1987).Google Scholar
  2. 2.
    O. A. Ladyzhenskaya, Mathematical Questions of the Dynamics of a Viscous Incompressible Liquid [in Russian], Nauka, Moscow (1970).Google Scholar
  3. 3.
    H. Lamb, Hydrodynamics, Dover Publications, New York (1945).zbMATHGoogle Scholar
  4. 4.
    G. Birkhoff, Hydrodynamics, Princeton University Press, Princeton (2016).Google Scholar
  5. 5.
    M. Ye. Deych, Technical Gas Dynamics, Wright-Patterson Air Force Base, Ohio – AF Systems Command (1961).Google Scholar
  6. 6.
    N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydrodynamics [in Russian], Fizmatlit, Moscow (1963).zbMATHGoogle Scholar
  7. 7.
    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, Springer, New York (2011).Google Scholar
  8. 8.
    S. O. Gladkov, Int. J. Math. Mod. Methods Appl. Sci., 9, 166–170 (2015).Google Scholar
  9. 9.
    S. O. Gladkov, Pis’ma Zh. Tekh. Fiz., 31, No. 2, 71–75 (2005).MathSciNetGoogle Scholar
  10. 10.
    S. O. Gladkov, Russ. Phys. J., 59, No. 8, 1268–1273 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations