Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1093–1099 | Cite as

Influence of the Environment on Pattern Formation in the One-Dimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Model

  • A. V. Shapovalov
  • V. V. Obukhov
Article
  • 15 Downloads

A self-consistent model of the dynamics of a cellular population described by the generalized Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal competitive losses and interaction with the environment is formulated, in which the dynamics is described by the diffusion equation with allowance for the interaction of the population and the environment. With the help of computer modeling, the formation of the population pattern under the influence of the environment is considered. Possible applications of the model and its generalizations are discussed.

Keywords

nonlocal generalized Fisher–Kolmogorov–Petrovskii–Piskunov equation pattern formation selfconsistent model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Murray, Mathematical Biology: An Introduction, Springer Verlag, New York (2001).Google Scholar
  2. 2.
    V. K. Vanag, Dissipative Structures in Reaction-Diffusion Systems. Experiment and Theory [in Russian], Institute of Computer Research Press, Moscow (2008).Google Scholar
  3. 3.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, J. Wiley & Sons, New York (1977).zbMATHGoogle Scholar
  4. 4.
    W. Ebeling, The Formation of Structures in Irreversible Processes [Russian translation], Mir, Moscow (1979).Google Scholar
  5. 5.
    P. Grindrod, The Theory and Application of Reaction-Diffusion Equations, Clarendon Press, Oxford (1996).zbMATHGoogle Scholar
  6. 6.
    A. M. Turing, Phil. Trans. R. Soc. Lond. B, 237, 37–72 (1952).ADSCrossRefGoogle Scholar
  7. 7.
    I. Lengyel and I. R. Epstein, Science, 251, No. 4994, 650–652 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    I. Lengyel and I. R. Epstein, Proc. Natl. Acad. Sci. USA, 89, 3977 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Fisher, Ann. Eugenics, 7, 355–369 (1937).CrossRefGoogle Scholar
  10. 10.
    A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Bulletin of Moscow State University, Section A, 1, No. 6, 1–25 (1937).Google Scholar
  11. 11.
    M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre, Phys. Rev. Lett., 91 (2003), Art. ID: 158104.Google Scholar
  12. 12.
    Y. E. Maruvka and N. M. Shnerb, Phys. Rev. E, 73, 011903 (2006).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Genieys, V. Volpert, and P. Auge, Mathematical Modelling of Natural Phenomena, 1, No.1, 65–82 (2006).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Yu. Trifonov and A. V. Shapovalov, Russ. Phys. J., 52, No. 9, 899–911 (2009).CrossRefGoogle Scholar
  15. 15.
    E. A. Levchenko, A. V. Shapovalov, and A. Yu. Trifonov, J. Phys. A, 47 (2014), Art. ID: 025209.Google Scholar
  16. 16.
    A. V. Shapovalov and A.Yu. Trifonov, Int. J. Geom. Meth. Mod. Phys., 15 (2018), Art. ID: 1850102.Google Scholar
  17. 17.
    A. V. Shapovalov and V. V. Obukhov, Symmetry, 10, No. 3 (2018), Art. ID: 53.Google Scholar
  18. 18.
    E. Simbawa, Comput. Math. Meth. Med., 2017 (2017), Art. ID: 3676295.Google Scholar
  19. 19.
    A. V. Borisov, R. O. Rezaev, A. Yu. Trifonov, and A. V. Shapovalov, Bulletin of Tomsk Polytechnic University, 315, No. 2, 24–28 (2009).Google Scholar
  20. 20.
    A. V. Borisov, A. Yu. Trifonov, and A. V. Shapovalov, Komp’yut. Issled. Modelirovanie, 2, No. 1, 33–40 (2010).Google Scholar
  21. 21.
    V. A. Aleutdinova, A. V. Borisov, V. É. Shaparev, and A. V. Shapovalov, Russ. Phys. J., 54, No. 4, 479 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Nicoll, E. A. Gorbunov, S. A. Tarasov, and O. I. Epstein, Int. J. Endocrinol. (2013), Art. ID: 925874.Google Scholar
  23. 23.
    S. A. Tarasov, V. V. Zarubaev, E. A. Gorbunov, et al., Antivir. Res., 93, 219– 224 (2012).CrossRefGoogle Scholar
  24. 24.
    O. Epstein, Symmetry, 10, No. 4 (2018), Art. ID: 103.Google Scholar
  25. 25.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Langhorne, Pennsylvania (1993).Google Scholar
  26. 26.
    V. V. Uchaikin, Usp. Fiz. Nauk, 173, No. 8, 847–875 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Tomsk State Pedagogical UniversityTomskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations