Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1047–1053 | Cite as

Influence of the Solvent on the Structure and Morphology of Nanoparticles Fabricated by Laser Ablation of Bulk Magnesium Targets

  • V. A. Svetlichnyi
  • D. A. Goncharov
  • I. N. Lapin
  • A. V. Shabalina
Article
  • 1 Downloads

Ultrafine powders and colloid solutions of nanoparticles are fabricated by nanosecond pulsed laser ablation (a Nd:YAG laser, 1064 nm, 7 ns, 150 mJ, and 20 Hz) of metallic magnesium targets in water and organic solvents of different polarities (ethyl alcohol, ethyl acetate, and n-hexane). The morphology, dimensional characteristics, composition, and structure of the particles are studied by the methods of transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy depending on the solvent used. For the first time it has been demonstrated that nanostructures of magnesium oxyhydroxide Mg5O(OH)8 are formed during the ablation in water. It is established that in organic solvents, formation of hexagonal and cubic magnesium oxides is possible. Nanoparticles fabricated by the ablation in less thermostable solvents – ethyl acetate and hexane – contain carbonates.

Keywords

pulsed laser ablation nanoparticles crystal structure magnesium hydroxide oxyhydroxide lamella cubic and hexagonal magnesium oxide influence of the solvent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sain, S. H. Park, F. Suhara, and S. Law, Polym. Degrad. Stab., 83, 363–367 (2004).CrossRefGoogle Scholar
  2. 2.
    J. L. Booster, A. V. Sandwijk, and M. A. Reuter, Miner. Eng., 16, 273–281 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Kang and P. Schwendeman, Biomaterials, 23, 239–245 (2002).CrossRefGoogle Scholar
  4. 4.
    C. Henrist, J. P. Mathieu, C. Vogels, et al., J. Cryst. Growth, 249, 321–330 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    Y. D. Li, M. Sui, Y. Ding, et al., Adv. Mater., 12, 818–821 (2000).CrossRefGoogle Scholar
  6. 6.
    H. Chen, C. Xu, Y. Liu, and G. Zhao, Electron. Mater. Lett., 8, 529–533 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    W. L. Fan, S. X. Sun, L. P. You, et al., J. Mater. Chem., 13, 3062–3065 (2003).CrossRefGoogle Scholar
  8. 8.
    B. Li, H. Cao, and G. Yin, J. Mater. Chem., 21, 13765–13768 (2011).CrossRefGoogle Scholar
  9. 9.
    J. P. Lv, L. Z. Qiu, and B. J. Qu, J. Cryst. Growth, 267, 676–684 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    C. Liang, T. Sasaki, Y. Shimizu, and N. Koshizaki, Chem. Phys. Lett., 389, 58–63 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    T. X. Phuoc, B. H. Howard, D. V. Martello, et al., Opt. Laser. Eng., 46, 829–834 (2008).CrossRefGoogle Scholar
  12. 12.
    F. Abrinaei, J. Opt. Soc. Am. B, 33, No. 5, 864–869 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    K. J. Klabunde, J. V. Stark, O. Koper, et al., J. Phys. Chem., 100, No. 30, 12142–12153 (1996).CrossRefGoogle Scholar
  14. 14.
    R. Richards, W. F. Li, S. Decker, et al., J. Am. Chem. Soc., 122, No. 20, 4921–4925 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Y. Niu, J. Yang, S. A. Kulinich, et al., J. Am. Chem. Soc., 132, No. 28, 9814–9819 (2010).CrossRefGoogle Scholar
  16. 16.
    Z. Yan, R. Bao, C. M. Busta, and D. B. Chrisey, Nanotechnology, 22, Art. No. 265610, 1–8 (2011).Google Scholar
  17. 17.
    F. Abrinaei, M. J. Torkamany, M. R. Hantezadeh, and J. Sabbaghzadeh, Sci. Adv. Mater., 4, No. 3/4, 501–506 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Schwenke, P. Wagener, S. Nolte, and S. Barcikowski, Appl. Phys. A, 104, 77–82 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    K. S. Khashan and F. Mahdi, Surf. Rev. Lett., 24, No. 7, Art. No. 1750101, 1–7 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    F. Abrinaei, J. Eur. Opt. Soc.-Rapid Publ., 13, No. 15, 1–10 (2017).Google Scholar
  21. 21.
    V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 56, No. 5, 581–587 (2013).CrossRefGoogle Scholar
  22. 22.
    V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 57, No. 12, 1789–1792 (2014).CrossRefGoogle Scholar
  23. 23.
    M. J. McKelvy, R. Sharma, A. V. G. Chizgridya, and R. W. Carpenter, Chem. Mater., 13, No. 3, 921–926 (2001).CrossRefGoogle Scholar
  24. 24.
    L.-X. Li, D. Xu, X.-Q. Li, et al., New J. Chem., 38, 5445–5452 (2014).CrossRefGoogle Scholar
  25. 25.
    S. Xie, X. Han, Q. Kuang, et al., J. Mater. Chem., 21, 7263–7268 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Svetlichnyi
    • 1
  • D. A. Goncharov
    • 1
  • I. N. Lapin
    • 1
  • A. V. Shabalina
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations