Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1034–1038 | Cite as

Microstructure of Contact Material Modified by High-Current Vacuum Arc

  • E. V. Yakovlev
  • A. V. Schneider
  • E. L. Dubrovskaya
  • S. A. Popov
Article
  • 18 Downloads

The paper presents research results into the microstructure of Cu–Cr composite material affected by the highcurrent vacuum arc. The investigation of the electrode cross-sections allows us to emphasize two zones both for anode and cathode: 1) the exposure zone of the vacuum arc and 2) the virgin material. The first zone locates on the surface of electrodes and is just a zone that crystallizes after the electrode melting due to the exposure to the high-current vacuum arc. It is interesting that on anode there appears a narrow, transition layer enriched with chromium nearby the virgin material and with copper in the exposure zone of the vacuum arc. The formation of such a layer on cathode is not observed.

Keywords

high-current vacuum arc microstructure composite material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Zhang, Z. Yang, Y. Wang, and B. Ding, Adv. Eng. Mater., 7, No. 12, 1114–1117 (2005).CrossRefGoogle Scholar
  2. 2.
    Yaping Wang, Chengyu Zhang, Hui Zhang, et al., J. Phys. D: Appl. Phys., 36, 2649–2654 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    Xin Wei, Jiping Wang, Zhimao Yang, et al., J. Alloys Compd., 509, 7116–7120 (2011).CrossRefGoogle Scholar
  4. 4.
    P. G. Slade, IEEE Trans. on CPMT, 17, Part A, 96–106 (1994).Google Scholar
  5. 5.
    Li Yu, Jianhua Wang, Yingsan Geng, et al., Proc. 24th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Braunschweig, Germany, (2010), pp. 257–260.Google Scholar
  6. 6.
    A. V. Schneider, S. A. Popov, V. G., Durakov, et al., Proc. 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Tomsk, Russia, (2012), pp. 269–271.Google Scholar
  7. 7.
    V. G. Durakov, S. F. Gnyusov, B. V. Dampilon, et al., Proc. 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Tomsk, Russia, (2012), pp. 525–528.Google Scholar
  8. 8.
    A. V. Schneider, S. A. Popov, A. V. Batrakov, et al., IEEE Trans. Plasma Sci., 39, No. 6, 1349–1353 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Schneider, S. A. Popov, and A. V. Batrakov, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 7/2, 373–378 (2013).Google Scholar
  10. 10.
    Shunxin Zhu, Yong Liu, Baohong Tian, et al., Vacuum, 143, 129–137 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    Chunping Wu, Danqing Yi, Wei Weng, et al., Mater. Des., 85, 511–519 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. V. Yakovlev
    • 1
  • A. V. Schneider
    • 1
  • E. L. Dubrovskaya
    • 1
  • S. A. Popov
    • 1
  1. 1.The Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations