Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1029–1033 | Cite as

Thermophysical, Rheological and Morphological Properties of Polyoxymethylene Polymer Composite for Additive Technologies

  • S. M. Lebedev
  • O. S. Gefle
  • E. T. Amitov
  • D. V. Zhuravlev
  • D. Yu. Berchuk
Article
  • 15 Downloads

The paper presents investigations into thermophysical, rheological, and morphological properties of graphitized carbon nanotube/polyoxymethylene composites containing 30 wt.% graphite and 0.1 wt.% nanotubes. It is shown that thermal conductivity and thermal diffusivity of graphitized carbon nanotube/polyoxymethylene composites increase respectively by 8 and 11 times in comparison with the original polyoxymethylene. And their melt flow index reduces approximately by 3.5 times. In spite of the abrupt decrease in the melt flow index, graphitized carbon nanotube/polyoxymethylene composites can be used in extrusion, jet molding and three-dimensional printing.

Keywords

polyoxymethylene graphitized carbon nanotube/polyoxymethylene composite additive technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-G. Long, W.-X. Liu, and X.-Y. Wang, Bull. Mater. Sci., 26, No. 6, 575–578 (2003).CrossRefGoogle Scholar
  2. 2.
    Z. H. Li, Mater. Technol., 27, No. 3, 230–232 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    J. He, L. Zhang, and C. Li, Polymer Eng. Sci., 50, No. 11, 2153–2159 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. J. Mergler, R. P. Schaake, and A. J. Huis in’t Veld, Wear, 256, No. 3–4, 294– 301 (2004).CrossRefGoogle Scholar
  5. 5.
    X. L. Gao, C. Qu, Q. Zhang, et al., Macromol. Mater. Eng., 289, No. 1, 41–48 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Agari, A. Ueda, and S. J. Nagai, Appl. Polymer Sci., 42, No. 6, 1665–1669 (1991).CrossRefGoogle Scholar
  7. 7.
    I. Krupa, I. Novak, and I. Chodak, Synthetic Metals, 145, No. 2, 245–252 (2004).CrossRefGoogle Scholar
  8. 8.
    S. M. Lebedev and O. S. Gefle, Appl. Thermal Eng., 91, 875–882 (2014).CrossRefGoogle Scholar
  9. 9.
    S. M. Lebedev, O. S. Gefle, E. T. Amitov, et al., Polymer Testing, 58, 241–248 (2017).CrossRefGoogle Scholar
  10. 10.
    X. Zhao and L. J. Ye, Appl. Polymer Sci., 111, No. 2, 759–767 (2009).Google Scholar
  11. 11.
  12. 12.
    G. C. Glatzmaier and W. F. Ramirez, Rev. Sci. Instrum., 56, No. 7, 1394–1398 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    P. L. Kapitza, Collected Papers of P. L. Kapitza, Vol. 2, D. ter Haar, ed., Pergamon Press, Oxford (1965).Google Scholar
  14. 14.
    S. Shenogin, L. Xue, R. Ozisik, et al., J. Appl. Phys., 95, No. 12, 8136–8144 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, Appl. Phys. Lett., 87, 133106/1–3 (2005); http://doi.org/ https://doi.org/10.1063/1.2056915.
  16. 16.
    Z. Han and A. Fina, Prog. Polymer Sci., 36, No. 7, 914–944 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Lebedev
    • 1
  • O. S. Gefle
    • 1
  • E. T. Amitov
    • 1
  • D. V. Zhuravlev
    • 1
  • D. Yu. Berchuk
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations