Advertisement

Russian Physics Journal

, Volume 61, Issue 5, pp 989–993 | Cite as

Dielectric Properties of Ferroelectric Nanocomposites Based on KD2PO4

  • A. Yu. Milinskii
  • S. V. Baryshnikov
  • E. V. Charnaya
  • M. I. Samoilovich
Article
  • 1 Downloads

The temperature dependences of the dielectric permittivity ε' and dielectric loss tangent tgδ have been studied for KD2PO4 embedded into the pores of the SBA-15 molecular sieves and opals. An increase in the phase transition temperature by 5 K was found for KD2PO4 in the pores of opal as compared to the polycrystalline sample. In the composite KD2PO4/SBA-15 samples, no phase transitions were detected by dielectric measurements.

Keywords

ferroelectrics dielectric properties phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kumzerov and S. Vakhrushev, Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa, V. 7, American Sci. Publishers (2004).Google Scholar
  2. 2.
    J. M. Wesselinowa, T. Michael, and S. Trimper, Handbook of Nanophysics: Nanoparticles and Quantum Dots, ed. by K. D. Sattler, CRC Press (2010).Google Scholar
  3. 3.
    E. V. Colla, A. V. Fokin, and Yu. A. Kumzerov, Solid State Commun., 103, Iss. 2, 127–130 (1997).Google Scholar
  4. 4.
    V. Tarnavich, L. Korotkov, O. Karaeva, et al., Opt. Appl., 40, Iss. 2, 305–309 (2010).Google Scholar
  5. 5.
    A. Ciżman, T. Marciniszyn, E. Rysiakiewicz-Pasek, et al., Phase Transitions, 86, Iss. 9, 910–916 (2013).Google Scholar
  6. 6.
    B. Dorner, I. Golosovsky, Yu. Kumzerov, et al., Ferroelectrics, 286, Iss. 1, 213–219 (2003).Google Scholar
  7. 7.
    J. E. Tibballs, R. J. Nelmes, and G. J. McIntyre, J. Phys. C: Solid State Phys., 15, Iss. 1, 37–58 (1982).Google Scholar
  8. 8.
    G. A. Samara, Ferroelectrics, 5, Iss. 1, 25–37 (1973).Google Scholar
  9. 9.
    S. D. Kirik, V. A. Parfenov, and S. M. Zharkov, Micropor. Mesopor. Mater., 195, Iss. 1, 21–30 (2014).Google Scholar
  10. 10.
    J. Bornarel and B. Torche, Ferroelectrics, 76, Iss. 1, 201–207 (1988).Google Scholar
  11. 11.
    L. A. Shuvalov, I. S. Zheludev, A. V. Mnatsakanyan, Izv. Acad. Nauk SSSR, Ser. Fiz., 31, No. 11, 1919–1923 (1967).Google Scholar
  12. 12.
    S. V. Baryshnikov, E. V. Charnaya, Tien Cheng, et al., Fiz. Tverd. Tela, 49, No. 4, 751– 755 (2007).Google Scholar
  13. 13.
    V. M. Fridkin, R. V. Gainutdinov, and S. Dyusharm, Usp. Fiz. Nauk, 180, Iss. 2, 209–217 (2010).Google Scholar
  14. 14.
    W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B, 50, Iss. 2, 698–703 (1994).Google Scholar
  15. 15.
    C. L. Wang, Y. Xin, X. S. Wang, and W. L. Zhong, Phys. Rev. B, 62, Iss. 17, 11423–11427 (2000).Google Scholar
  16. 16.
    C. Tien, E. V. Charnaya, M. K. Lee, et al., J. Phys.: Cond. Matter., 20, Iss. 21, 215205 (2008).Google Scholar
  17. 17.
    S. V. Baryshnikov, E. V. Charnaya, E. V. Stukova, et al., Fiz. Tverd. Tela, 52, No. 7, 1347–1350 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Yu. Milinskii
    • 1
  • S. V. Baryshnikov
    • 1
  • E. V. Charnaya
    • 2
  • M. I. Samoilovich
    • 3
  1. 1.Blagoveshchensk State Pedagogical UniversityBlagoveshchenskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.TsNITI “Tekhnomash”MoscowRussia

Personalised recommendations