Advertisement

Russian Physics Journal

, Volume 61, Issue 5, pp 833–842 | Cite as

On Analytical Solutions of the Quasiclassical Kinetic Equation of the Highest-Order Perturbation Theory in the Approximation of the Relaxation Time

  • S. O. Gladkov
  • S. B. Bogdanova
ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY

It is proved that the solution of the quasiclassical kinetic equation for the Bose and Fermi statistics can be represented in general in the approximation of the relaxation time. Thanks to the found general solution for the distribution function f(r, p, t), any nonequilibrium characteristic of metals, magnets, and dielectrics can be calculated in any order of perturbation theory in the approximation of the relaxation time τ.

Keywords

quasiclassical kinetic equation quasiequilibrium distribution function heat conductivity conductivity current density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Kaganov and V. M. Tsukernik, Izv. Akad. Nauk SSSR. Ser. Fizich., 25, No. 11, 1346–1351 (1961).Google Scholar
  2. 2.
    P. S. Zyryanov and G. G. Taluts, Zh. Eksp. Teor. Fiz., 49, No. 8, 1942–1950 (1965).Google Scholar
  3. 3.
    A. J. Leggett and D. ter Haar, Phys. Rev., 139, No. 3, A779–A784 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    S. O. Gladkov, Zh. Eksp. Teor. Fiz., 80, No. 6, 2475–2479 (1981).Google Scholar
  5. 5.
    L. É. Gurevich and B. I. Shklovsk, Fiz. Tverd. Tela, 9, No. 5, 526–532 (1967).Google Scholar
  6. 6.
    S. O. Gladkov, Chem. Phys. Lett., 174, Nо. 6, 636–640 (1990).Google Scholar
  7. 7.
    S. O. Gladkov, Phys. Rep., 182, Nоs. 4–5, 211–365 (1989).Google Scholar
  8. 8.
    S. O. Gladkov, Physics of Composites: Thermodynamic and Dissipative Properties [in Russian], Nauka, Moscow (1999).Google Scholar
  9. 9.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electronic Theory of Metals [in Russian], Nauka, Moscow (1971).zbMATHGoogle Scholar
  10. 10.
    V. L. Gurevich, Kinetics of Phonon Systems [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations