Advertisement

Russian Physics Journal

, Volume 61, Issue 5, pp 821–827 | Cite as

Special Features of L21L10 Thermoelastic Martensitic Transformations in Ni54Fe19Ga27 Single Crystals in Tension

  • E. E. Timofeeva
  • E. Yu. Panchenko
  • Yu. I. Chumlyakov
  • A. I. Tagil’tsev
  • V. A. Kirillov
  • H. J. Maier
Article
  • 5 Downloads

Special features of L21–(14М)–L10 martensitic transformations (MT) are experimentally established for [001]-oriented Ni54Fe19Ga27 (аt.%) single crystals under tensile stress, including staging of superelasticity curves, stress hysteresis, and strain level of martensite formation depending on the test temperature and MT sequence. An additional stage of inelastic strain with high strain hardening coefficient and a stress drop arise on the σ(ε) curves in the interval of changes of the stress-induced MT sequence from L21–14M–L10 to L21–L10 (320–400 K) at superelasticity (SE). Special features and physical reasons of this stage and of the stress drop related with the processes of origin and detwinning of L10 martensite during stress-induced L21–L10 transformation are established. The stage of inelastic strain and the stress drop are absent at the L21–14М–L10 MT in the [001]-oriented single crystals or at the L21–L10 MT at other orientations, where detwinning of L10 martensite is suppressed by geometrical reasons.

Keywords

superelasticity thermoelastic martensitic transformations single crystals stress hysteresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Design, 56., 1078–1113 (2014).CrossRefGoogle Scholar
  2. 2.
    Yu. Chumlyakov, I. Kireeva, E. Panchenko, et al., J. Alloys Compounds, 577, S393–S398 (2013).CrossRefGoogle Scholar
  3. 3.
    E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, et al., Pis’ma Zh. Tekh. Fiz., 43, No. 6, 86–93 (2017).Google Scholar
  4. 4.
    K. Otsuka and X. Ren, Prog. Mater. Sci., 50, No. 5, 511–678 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Efstathiou, H. Sehitoglu, J. Carroll, et al., Acta Mater., 56, 3791–3799 (2008).CrossRefGoogle Scholar
  6. 6.
    R. F. Hamilton, H. Sehitoglu, C. Efstathiou, and H. I. Maier, Acta Mater., 55, 4867–4876 (2007).CrossRefGoogle Scholar
  7. 7.
    I. V. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., in: Shape Memory Alloys: Properties, Technologies, Opportunities, Trans. Tech. Publications (2015), pp. 108–174.Google Scholar
  8. 8.
    A. L. Roytburd and Ju. Slusker, Mater. Sci. Eng. A, 238, 23–31 (1997).CrossRefGoogle Scholar
  9. 9.
    A. L. Roytburd, Mater. Sci. Forum, 327, 389–392 (2000).CrossRefGoogle Scholar
  10. 10.
    K. Otsuka, C. M. Wayman, K. Nakai, et al., Acta Metall., 24, No. 3, 207–226 (1976).CrossRefGoogle Scholar
  11. 11.
    N. Ozdemir, I. Karaman, N. A. Mara, et al., Acta Mater., 60, 5670–5685 (2012).CrossRefGoogle Scholar
  12. 12.
    J. A. Monroe, I. Karaman, H. E. Karaca, et al., Scripta Mater., 62, 368–371 (2010).CrossRefGoogle Scholar
  13. 13.
    P. Krooß, T. Niendorf, P. M. Kadletz, et al., Shape Memory and Superelasticity, 1, No. 1, 6–17 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    T. Niendorf, J. Dadda, J. Lackmann, et al., Mater. Sci. Forum, 738–739, 82–86 (2013).Google Scholar
  15. 15.
    T. Niendorf, P. Krooß, C. Somsen, et al., Acta Mater., 89, 298–304 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. E. Timofeeva
    • 1
  • E. Yu. Panchenko
    • 1
  • Yu. I. Chumlyakov
    • 1
  • A. I. Tagil’tsev
    • 1
  • V. A. Kirillov
    • 1
  • H. J. Maier
    • 2
  1. 1.V. D. Kuznetsov Physical-Technical Institute at Tomsk State UniversityTomskRussia
  2. 2.Institut für WerkstoffkundeLeibniz Universität HannoverGarbsenGermany

Personalised recommendations