Russian Physics Journal

, Volume 61, Issue 3, pp 579–587 | Cite as

Solution of A. Einstein’s Problem on the Density of Matter in the Universe

  • I. M. Vasenin
  • V. L. Goiko

On the basis of the special theory of relativity and a solution of the Schwarzschild equations of general relativity, a generalized equation of Friedmann–Einstein–de Sitter type has been obtained for the expanding Universe. As a result of our work on the boundary value problem for this equation, we have found the eigenvalue of the resulting eigenvalue problem, linking the density of the Universe in the comoving coordinates, the Hubble constant, and the gravitational constant. We have calculated a value for the density of matter in the Universe which is in agreement with the observational data. We have shown that the missing dark energy is the relativistic kinematic and potential energy of the expanding Universe.


special theory of relativity general theory of relativity equation of A. Friedmann A. Einstein and W. de Sitter type Hubble’s law boundary value problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Friedman, Z. Phys., 10, 377–386 (1922).ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, Sitzungsberichte Preuss. Akad. Wiss., Phys.-Math. Kl., 235–237 (1931).Google Scholar
  3. 3.
    A. Einstein, Proc. Nat. Acad. Sci., 18, 213–214 (1932).ADSCrossRefGoogle Scholar
  4. 4.
    A. Einstein, Sur la Structure Cosmologique de l’Espace (1932), pp. 99–109.Google Scholar
  5. 5.
    A. Einstein, in: The Meaning of Relativity, Princeton University Press, Princeton (1945).Google Scholar
  6. 6.
    Kh. F. Valiev and A. N. Kraiko, J. Appl. Math. Mech., 79, No. 6, 556–565 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Perlmutter, Usp. Fiz. Nauk, 183, No. 10, 1060–1077 (2013).CrossRefGoogle Scholar
  8. 8.
    B. P. Schmidt, Usp. Fiz. Nauk, 183, No. 10, 1078–1089 (2013).CrossRefGoogle Scholar
  9. 9.
    A. G. Riess, Usp. Fiz. Nauk, 183, No. 10, 1090–1098 (2013).CrossRefGoogle Scholar
  10. 10.
    I. M. Vasenin and V. L. Goiko, Russ. Phys. J., 60, No. 10, 1690–1695 (2017).CrossRefGoogle Scholar
  11. 11.
    I. M. Vasenin and V. L. Goiko, Russ. Phys. J., 60, No. 6, 958–963 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Einstein, Science, 16–17 (1946).Google Scholar
  13. 13.
    A. Einstein, The Meaning of Relativity, Princeton Univ. Press, Princeton (1921).zbMATHGoogle Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann, London (1975).zbMATHGoogle Scholar
  15. 15.
    Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics: The Structure and Evolution of the Universe, University of Chicago Press, Chicago (1983).Google Scholar
  16. 16.
    Hubble’s Law: Wikipedia. The Free Encyclopedia, URL’s_law (submission date: February 27, 2017).
  17. 17.
    G. Hinshaw et al., arXiv 1212.5226 v3 [] 4 jun 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations