Advertisement

Russian Physics Journal

, Volume 61, Issue 3, pp 525–533 | Cite as

Influence of the Atmospheric Phenomena on the Tropospheric Delay of Satellite Navigation Signals

  • F. N. Zakharov
  • S. A. Mikhailenko
  • D. V. Timoshin
Article
  • 6 Downloads

An error in calculating the tropospheric delay of satellite navigation signals is estimated for different atmospheric phenomena. As atmospheric phenomena, different precipitation types (hydrometeors) and electrical phenomena (thunderstorms and summer lightning) are considered. The tropospheric delay is calculated for the Saastamoinen and Hopfield models with the vertical profiles of the atmospheric meteorological parameters obtained by aerological sounding. The error of the given methods is determined by a comparison of the calculated and true values of the zenith tropospheric delays. The influence of the atmospheric phenomena on the error value is analyzed.

Keywords

tropospheric delay atmospheric phenomena Saastamoinen model Hopfield model aerological sounding global navigation satellite systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Antonovich, Application of Satellite Navigating Systems in Geodesy, Vol. 1 [in Russian], Federal State Unitary Enterprise “Kartgeotsentr,” Moscow (2005).Google Scholar
  2. 2.
    A. I. Perov and V. N. Kharisov, GLONASS. Construction and Operation Principles [in Russian], Radiotekhnika, Moscow (2010).Google Scholar
  3. 3.
    B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, Springer Science & Business Media (2012).Google Scholar
  4. 4.
    F. N. Zakharov and M. V. Krutikov, Doklady TUSUR, No. 2 (32), 7–12 (2014).Google Scholar
  5. 5.
    F. N. Zakharov, S. G. Gosenchenko, and M. V. Krutikov, Doklady TUSUR, No. 1 (35), 9–17 (2015).Google Scholar
  6. 6.
    D. Yu. Pershin, Vestnik NSU. Series Information Technology, 7, No. 1, 84–91 (2009).Google Scholar
  7. 7.
    V. I. Lutsenko et al., in: Proc. 24th Int. Crimean Conf. “Microwave & Telecommunication Technology” (CriMiCo’ 2014), Sevastopol (2014), pp. 1125–1126.Google Scholar
  8. 8.
    S. P. Shchekin et al., Radiofiz. Elektron., 7 (21), No. 3, 40–47 (2016).Google Scholar
  9. 9.
    L. V. Pavlova, in: Proc. XX All-Russian Sci. Conf. “Propagation of Radio Waves, N. Novgorod (2002), pp. 352–353.Google Scholar
  10. 10.
    B. R. Bin and E. J. Datton, Radio Meteorology [Russian translation], Gidrometeoizdat, Leningrad (1971).Google Scholar
  11. 11.
    O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the file of urgent data on the main meteorological parameters at the Russian stations, Certificate of State Registration of Database No. 2014620549.Google Scholar
  12. 12.
    O. N. Bulygin, V. M. Veselov, T. M. Aleksandrova, and N. N. Korshunova, Description of the file of data on atmospheric phenomena at the Russian meteorological stations, Certificate of State Registration of Database No. 015620081.Google Scholar
  13. 13.
    F. N. Zakharov, S. G. Gosenchenko, and M. V. Krutikov, Usp. Sovrem. Radioelektr., No, 11, 14–17 (2016).Google Scholar
  14. 14.
    V. B. Kashkin and E. B. Petrov, Izv. Vyssh. Ucheb. Zaved. Fiz., 53, No. 9/2, 27–29 (2010).Google Scholar
  15. 15.
    V. B. Kashkin, V. M. Vladimirov, and A. O. Klykov, Opt. Atm. Okeana, 27, No. 7, 615–621 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. N. Zakharov
    • 1
  • S. A. Mikhailenko
    • 1
  • D. V. Timoshin
    • 1
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations