Advertisement

Russian Physics Journal

, Volume 61, Issue 3, pp 428–438 | Cite as

Structure Amorphization and Mechanical Properties of Nanolaminates of the Copper–Niobium System During High-Pressure Torsion

  • I. E. Permyakova
  • A. M. Glezer
  • M. I. Karpov
  • V. I. Vnukov
  • D. V. Shtansky
  • M. V. Gorshenkov
  • I. V. Schetinin
Article
  • 16 Downloads

The results of investigation of structural transformations and mechanical behavior of nanolaminates are reported, which were manufactured by multiple rolling of alternating layers of copper and niobium, followed by high-pressure torsion in the Bridgeman chamber. A detailed analysis of structure alteration of the material under study is performed by the high-resolution TEM methods. The changes in the value of microhardness in three dimensions (3D) are investigated during variation of the degree of straining of nanolaminates in the course of their torsion. A phenomenon of structure amorphization and a sharp increase in strength characteristics are revealed.

Keywords

nanolaminate composite high-pressure torsion severe plastic deformation amorphization microhardness copper niobium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. K. Schuller, Phys. Rev. Lett., 44, No. 24, 1597–1600 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    I. J. Beyerlein, N. A. Mara, J. S. Carpenter, et al., J. Mater. Res., 28, No. 13, 1799–1812 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    J. S. Carpenter, S. C. Vogel, J. E. LeDonne, et al., Acta Mater., 60, No. 4, 1576–1586 (2012).CrossRefGoogle Scholar
  4. 4.
    M. I. Karpov, V. I. Vnukov, N. V. Medved, et al., Proc. 15-th Int. Plansee Seminar (28 May – 1 June 2001. Reutte, Austria), 4, 97–107 (2001).Google Scholar
  5. 5.
    M. I. Karpov, B. A. Gnessin, V. I. Vnukov, et al., Proc. 16-th Int. Plansee Seminar. (30 May – 3 June, 2005. Reutte, Austria), 1, 785–795 (2005).Google Scholar
  6. 6.
    V. P. Korzhov and M. I. Karpov, J. Phys. High Pressure Technol., 21, No. 2, 92–102 (2011).Google Scholar
  7. 7.
    M. I. Karpov, B. A. Gnessin, V. I. Vnukov, et al., Proc. Intr. Conf. «Advanced Metallic Materials». (5–7 November 2003. Smolenice Castle, Slovakia), Bratislava, Slovakia: Published at Institute of Materials &Machine Mechanics. Slovak Academy of Sciences, 141–143 (2003).Google Scholar
  8. 8.
    I. A. Ovid'ko, J. Phys. D: Appl. Phys., 24, No. 12, 2190–2195 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Betekhtin, Yu. R. Kolobov, B. K. Kardashev, et al., Tech. Phys. Lett., 38, No. 2, 144–146 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, J. Appl. Phys., 113, 063515(1–10) (2013).Google Scholar
  11. 11.
    R. A. Andrievski, Russ. Chem. Rev., 83, No. 4, 365–375 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    S. Zheng, I. J. Beyerlein, J. S. Carpenter, et al., Nature Commun., 4, 1696– 1703 (2013).CrossRefGoogle Scholar
  13. 13.
    I. J. Beyerlein, J. R. Mayeur, S. Zheng, et al., Proc. Natl. Acad. Sci. USA, 111, 4386–4390 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Kuznetsov, N. D. Stepanov, G. A. Salishchev, et al., Russian Metallurgy (Metally), 2010, No. 11, 1072–1079 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    E. H. Ekiz, T. G. Lach, R. S. Averback, et al., Acta Mater., 72, 178–191 (2014).CrossRefGoogle Scholar
  16. 16.
    Yu. R. Kolobov, A. G. Lipnitskii, I. V. Nelasov, and G. P. Grabovetskaya, Russ. Phys. J., 51, No. 4, 385–399 (2008).CrossRefGoogle Scholar
  17. 17.
    A. G. Lipnitskii, I. V. Nelasov, E. V. Golosov, et al., Russ. Phys. J., 56, No. 3, 330–337 (2013).CrossRefGoogle Scholar
  18. 18.
    I. V. Nelasov, A. G. Lipnitskii, and Yu. R. Kolobov, Russ. Phys. J., 52, No. 11, 1193–1198 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Wei, H. Oyanagi, C. Wen, et al., J. Phys.: Cond. Matter., 9, No. 50, 11077–11083 (1997).ADSGoogle Scholar
  20. 20.
    A. M. Glezer, Bull. Russ. Acad. Sci.: Phys., 71, No. 12, 1722–1730 (2001).CrossRefGoogle Scholar
  21. 21.
    El-Eskandarany M. Sherif, K. Aoki, K. Sumiyama, and K. Suzuki, Acta Mater., 50, No. 5, 1113–1123 (2002).CrossRefGoogle Scholar
  22. 22.
    I. E. Permyakova, A. M. Glezer, and K. V. Grigorovich, Bull. Russ. Acad. Sci.: Phys., 78, No. 10, 996–1000 (2014).CrossRefGoogle Scholar
  23. 23.
    K. Yasuna, M. Tarauchi, A. Otsuki, et al., J. Appl. Phys., 82, No. 5, 2435–2438 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    B. Huang, K. N. Ishihara, and P. H. Shingu, J. Mater. Sci. Lett., 19, No. 19, 1763–1765 (2000).CrossRefGoogle Scholar
  25. 25.
    D. V. Shtansky, K. Kaneko, Y. Ikuhara, and E. A. Levashov, Surf. Coat. Technol., 148, No. 2–3, 206–215 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. E. Permyakova
    • 1
  • A. M. Glezer
    • 1
    • 2
  • M. I. Karpov
    • 3
  • V. I. Vnukov
    • 3
  • D. V. Shtansky
    • 2
  • M. V. Gorshenkov
    • 2
  • I. V. Schetinin
    • 2
  1. 1.G. V. Kurdyumov Institute for Metal Science and Physics of Metals at the RF State Scientific Center of the I. P. Bardin Research Institute of Ferrous MetallurgyMoscowRussia
  2. 2.National University of Science and Technology, MISISMoscowRussia
  3. 3.Institute of Solid State Physics, RASChernogolovkaRussia

Personalised recommendations