Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1621–1628 | Cite as

Synthesis and pharmacological activity of a silicon—zinc—boron-containing glycerohydrogel

  • T. G. KhoninaEmail author
  • O. N. Chupakhin
  • N. V. Kungurov
  • N. V. Zilberberg
  • N. P. Evstigneeva
  • M. M. Kokhan
  • A. I. Polishchuk
  • V. V. Permikin
  • E. V. Shadrina
  • E. Yu. Nikitin
  • L. P. Larionov
Full Article


A new pharmacologically active nanostructured silicon—zinc—boron-containing glycerohydrogel was synthesized by the sol—gel method using silicon, zinc, and boron glycerolates as biocompatible precursors. The hydrogel composition and structural features were investigated by transmission electron microscopy, powder X-ray diffraction, IR spectroscopy, atomic emission spectrometry, and elemental analysis; a structural model was proposed. It was found that the 3D framework of the gel is formed by the products of hydrolysis and subsequent (co)condensation of silicon- and boron-containing precursors. Meanwhile, the major part of zinc monoglycerolate does not undergo hydrolytic transformations during gelation, being present in the 3D framework cells as amorphous nano-sized particles. The dispersion medium of the gel is an aqueous glycerol solution of silicon and boron glycerolates, products of their hydrolytic transformations, and water-soluble products of hydrolytic transformations of zinc monoglycerolate. The silicon—zinc—boron gel is nontoxic and possesses wound-healing and antimicrobial activities; it can be considered as a nanostructured dispersed system promising for biomedical applications, which is prepared in a simple and cost-effective way without using catalysts or toxic organic solvents.

Key words

silicon glycerolates zinc monoglycerolates boron bis-glycerolates biocompatible precursors sol—gel synthesis silicon—zinc—boron glycerohydrogel nanostructured dispersion system wound-healing and antimicrobial activities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu. Q. Wang, Nanoscale, 2015, 7, 4291.CrossRefGoogle Scholar
  2. 2.
    J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, K. M. Paknikar, Mol. Pharmaceutics, 2009, 6, 1388.CrossRefGoogle Scholar
  3. 3.
    M. Malmsten, Curr. Opin. Colloid Interface Sci., 2013, 18, 468.CrossRefGoogle Scholar
  4. 4.
    N. T. Pandya, P. Jani, J. Vanza, H. Tandel, Colloids Surf. B Biointerfaces, 2018, 165, 37.CrossRefGoogle Scholar
  5. 5.
    H. Peng, X. Liu, G. Wang, M. Li, K. M. Bratlie, E. Cochran, Q. Wang, J. Mater. Chem. B, 2015, 3, 6856.CrossRefGoogle Scholar
  6. 6.
    S.-Y. Qin, Y.-J. Cheng, Z.-W. Jiang, Y.-H. Ma, A.-Q. Zhang, Colloids Surf. B Biointerfaces, 2018, 165, 345.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Nanomedicine, 2015, 11, 313.CrossRefGoogle Scholar
  8. 8.
    L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer, Noyes Publications, New Jersey, 1998, 177 pp.Google Scholar
  9. 9.
    S. Sakka, Handbook of Sol-Gel Science and Technology: Applications of Sol-Gel Technology, V. 3, Kluwer, Boston, 2005, 791 pp.Google Scholar
  10. 10.
    D. Levy, M. Zayat, The Sol-Gel Handbook. Vol. 1: Synthesis and Processing, Wiley-VCH Verlag, Weinheim, 2015, 1616 pp.CrossRefGoogle Scholar
  11. 11.
    N. A. Shabanova, P. D. Sarkisov, Sol—gel tekhnologii. Nano-dispersnyi kremnezem [Sol—gel Technology. Nanodispersed Silica], BINOM. Laboratoriya znanii, Moscow, 2012, 334 pp. (in Russian).Google Scholar
  12. 12.
    D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Hüsing, J. Mater. Chem., 2005, 17, 4262.CrossRefGoogle Scholar
  13. 13.
    M. A. Brook, Y. Chen, K. Guo, Z. Zhang, J. D. Brennan, J. Mater. Chem., 2004, 14, 1469.CrossRefGoogle Scholar
  14. 14.
    Yu. A. Shchipunov, T. Yu. Karpenko, A. V. Krekoten, I. V. Postnova, J. Colloid Interface Sci., 2005, 287, 373.CrossRefGoogle Scholar
  15. 15.
    T. G. Khonina, E. V. Shadrina, A. A. Boyko, O. N. Chu-pakhin, L. P. Larionov, A. A. Volkov, V. D. Burda, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 75.CrossRefGoogle Scholar
  16. 16.
    T. G. Khonina, A. P. Safronov, E. V. Shadrina, M. V. Ivanenko, A. I. Suvorova, O. N. Chupakhin, J. Colloid Interface Sci., 2012, 365, 81.CrossRefGoogle Scholar
  17. 17.
    T. G. Khonina, A. P. Safronov, M. V. Ivanenko, E. V. Shadrina, O. N. Chupakhin, J. Mater. Chem. B, 2015, 3, 5490.aaaaaCrossRefGoogle Scholar
  18. 18.
    E. Yu. Larchenko, V. V. Permikin, A. P. Safronov, T. G. Khonina, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 1478.CrossRefGoogle Scholar
  19. 19.
    M. V. Ivanenko, T. G. Khonina, O. N. Chupakhin, L. P. Larionov, R. R. Sakhautdinova, A. P. Safronov, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 2163.CrossRefGoogle Scholar
  20. 20.
    O. N. Chupakhin, A. N. Bondarev, I. N. Shtan’ko, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, L. P. Larionov, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1219.CrossRefGoogle Scholar
  21. 21.
    T. G. Khonina, M. V. Ivanenko, O. N. Chupakhin, A. P. Safronov, E. A. Bogdanova, M. S. Karabanalov, V. V. Permikin, L. P. Larionov, L. I. Drozdova, Eur. J. Pharm. Sci., 2017, 107, 197.CrossRefGoogle Scholar
  22. 22.
    O. N. Chupakhin, T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Larchenko, L. P. Larionov, M. S. Karabanalov, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 558.CrossRefGoogle Scholar
  23. 23.
    RF Pat. 2583945; Buyll. Izobret. (Invention Bull.), 2016, 13 (in Russian).Google Scholar
  24. 24.
    E. Yu. Larchenko, T. G. Khonina, E. V. Shadrina, A. V. Pestov, O. N. Chupakhin, N. V. Men’shutina, A. E. Lebedev, D. D. Lovskaya, L. P. Larionov, S. A. Chigvintsev, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1225.CrossRefGoogle Scholar
  25. 25.
    M. Y. Cheong, A. H. Hazimah, A. A. H. Zafarizal, I. Rosnah, J. Oil. Palm. Res., 2012, 24, 1287.Google Scholar
  26. 26.
    M. Y. Cheong, A. H. Hazimah, I. Rosnah, A. A. H. Zafarizal, J. Saudi Chem. Soc., 2017, 21, 643.CrossRefGoogle Scholar
  27. 27.
    C. Chiappe, F. Signori, G. Valentini, L. Marchetti, C. S. Pomelli, F. Bellina, J. Phys. Chem. B, 2010, 114, 5082.CrossRefGoogle Scholar
  28. 28.
    V. I. Rakhimov, O. V. Rakhimova, M. P. Semov, Russ. J. Appl. Chem., 2010, 83, 214.CrossRefGoogle Scholar
  29. 29.
    Rukovodstvo po provedeniyu doklinicheskikh issledovanii lek-arstvennykh sredstv [Guidelines on the Preclinical Studies of Therapeutic Agents], Part 1, Ed. A. N. Mironov, Grif and K, Moscow, 2012, 944 pp. (in Russian).Google Scholar
  30. 30.
    M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal., 2016, 6, 71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • T. G. Khonina
    • 1
    • 2
    Email author
  • O. N. Chupakhin
    • 1
    • 3
  • N. V. Kungurov
    • 4
  • N. V. Zilberberg
    • 4
  • N. P. Evstigneeva
    • 4
  • M. M. Kokhan
    • 4
  • A. I. Polishchuk
    • 4
  • V. V. Permikin
    • 1
  • E. V. Shadrina
    • 1
  • E. Yu. Nikitin
    • 1
  • L. P. Larionov
    • 5
  1. 1.Ural Branch of the Russian Academy of SciencesI. Ya. Postovsky Institute of Organic SynthesisEkaterinburgRussian Federation
  2. 2.Ural State Agrarian UniversityEkaterinburgRussian Federation
  3. 3.Ural Federal University named after the first President of Russia B. N. YeltsinInstitute of Chemical EngineeringEkaterinburgRussian Federation
  4. 4.Ural Research Institute for Dermatology, Venereology, and ImmunopathologyEkaterinburgRussian Federation
  5. 5.Ministry of Health of the Russian FederationUral State Medical UniversityEkaterinburgRussian Federation

Personalised recommendations