Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1603–1612 | Cite as

Dynamic mechanical properties, thermal and heat resistance of multiblock co-poly(urethane-imide) films with graphene and tungsten disulfide

  • A. L. DidenkoEmail author
  • V. E. Smirnova
  • E. N. Popova
  • G. V. Vaganov
  • D. A. Kuznetcov
  • V. M. Svetlichnyi
  • O. V. Tolochko
  • E. S. Vasilyeva
  • V. E. Yudin
  • V. V. Kudryavtsev
Full Article
  • 2 Downloads

Abstract

Organic-inorganic composites filled with nanoscale graphene and tungsten disulfide particles using thermoelastoplastic multiblock co-poly(urethane-imide)s as polymer matrices were obtained. The matrix polymers were the products of the polycondensation of 1,3-bis-(3′,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(aminophenoxy)diphenyl sulfone, and two aliphatic polyesters terminated by 2,4-toluene diisocyanate, namely, polypropylene glycol (Mn = 2300) and poly(ethylene adipate) (Mn = 2700). The weight fraction of aromatic segments in samples of co-poly(urethane-imide)s differed by a factor of two. Obtained composites were investigated by TGA, DSC, and DMA methods.

Key words

co-poly(urethane-imide)s multi-block block copolymers nanoparticles tungsten disulfide graphene TGA DSC DMA heat resistance rubber-like high elasticity thermoplastic elastomers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Sang, R. Wang, X. Chen, L. Zhang, M. An, Y. Shen, Adv. Mater. Res., 2011, 284-286, 1746–1749; DOI: 10.4028/ww. scientiflc.net.CrossRefGoogle Scholar
  2. 2.
    X. Solimando, J. Babin, C. Arnal-Herault, Miao Wang, D. Barth, D. Roizard, J.-R. Doillon-Halmenschlager, M. Poncot, I. Royaud, P. Alcoufie, L. David, A. Jonquires, Polymer, 2017, 131, 56–67; DOI: 10.1016/j.poly-mer.2017.10.007.CrossRefGoogle Scholar
  3. 3.
    T. Ueda, S.-I. Inoue, Organic Polymer Materials, 2018, 8, 11–13; DOI: 10.4236/ojopm.2018.81001.Google Scholar
  4. 4.
    P. Rait, A. Kamming, Poliuretanovie elastomeri [Polyurethane Elastomers], Khimiya, Leningrad, 1973, 306pp. (inRussian).Google Scholar
  5. 5.
    M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Poliimidi — кlass termostoikikh polimerov [Polyimides - a Class of Heat-resistant Polymers], Nauka, Moscow, 1983, p. 307 (in Russian); https://search.rsl.ru/ru/record/01001180890.Google Scholar
  6. 6.
    T. Ueda, Sh.-Ich. Inoue, Open J. Polymer Chem., 2018, 8, 11–20; DOI: 10.4236/ojpchem.2018.81002.CrossRefGoogle Scholar
  7. 7.
    T. Ueda, T. Nishio, Sh. Inoue, Open J. Organic Polymer Materials, 2017, 7, 47–60; DOI: 10.4236/ojopm.2017.74004.CrossRefGoogle Scholar
  8. 8.
    A. C. de Visser, D. E. Gregonis, A. A. Driessen, Makromol. Chemie, 1978, 179, 1855–1859;  https://doi.org/10.1002/macp.1978.021790721.CrossRefGoogle Scholar
  9. 9.
    http://www.xumuk.ru/encyklopedia/2/4389.html.
  10. 10.
    A. Jonquieres, R. Clement, P. Lochon, Prog. Polym. Sci., 2002, 27, 1803–1877; https://doi.org/10.1016/S0079-6700(02)00024-2.CrossRefGoogle Scholar
  11. 11.
    H. Yeganeh, M. A. Shamekhi, Polymer, 2004, 45, 359–365, https://doi.Org/10.1016/j.polymer.2003.ll.006.CrossRefGoogle Scholar
  12. 12.
    R. M. Gerkin, B. L. Hilker, Block Copolymers: Segmented. Encyclopedia of Materials: Science and Technology, 2001, 730–732; DOI: 10.1016/b0-08-043152-6/00140-6.CrossRefGoogle Scholar
  13. 13.
    B. Masiulanis, J. Hrouz, J. Baldrian, M. Ilavsky, K. Dusek, J.Appl. Polymer Sci., 1987, 34, 1941–1951; DOI: 10.1002/ app.1987.070340512.CrossRefGoogle Scholar
  14. 14.
    A. L. Didenko, V. E. Smirnov, G. V. Vaganov, E. N. Popova, V. Yu. Elokhovskii, O. V. Toloshko, E. S. Vasilyeva, D. A. Kuznetcov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, J. Int. Sci. Publ.: Materials, Methods and Technologies, 2018, 12, 144–158; https://www.scientiflc-publications.net/ru/ article/1001690/.Google Scholar
  15. 15.
    J. Zhao, Y. Li, Y. Wang, J. Mao, Y. He, J. Luo, RSCAdv., 2017, 7, 1766–1770; DOI: 10.1039/c6ra26488c.Google Scholar
  16. 16.
    H. Xie, B. Jiang, J. Dai, C. Peng, C. Li, Q. Li, F. Pan, Steell Contacts Materials, 2018, 11, 206; DOI: 10.3390/mall020206.CrossRefGoogle Scholar
  17. 17.
    L. A. Chernozatonskii, A. A. Artyukh, Phys. Usp., 2018, 61, 2–28; DOI: https://doi.org/10.3367/UFNe.2017.02.038065.CrossRefGoogle Scholar
  18. 18.
    A. D. Breki, A. L. Didenko, V. V. Kudryavtsev, E. S. Vasilyeva, O. V. Tolochko, A. G. Kolmakov, A. E. Gvozdev, D. A. Provotorov, N. E. Starikov, Y A. Fadin, Inorg. Mater:Appl. Res., 2017, 8, 32–36; DOI: 10.1134/S2075113317010063.CrossRefGoogle Scholar
  19. 19.
    A. D. Breki, A. L. Didenko, V. V. Kudryavtsev, E. S. Vasilyeva, O. V. Tolochko, A. E. Gvozdev, N. N. Sergeyev, D. A. Provotorov, N. E. Starikov, Y A. Fadin, A. G. Kolmakov, Inorg. Mater: Appl. Res., 2017, 8, 56–59; DOI: 10.1134/ S2075113317010075.CrossRefGoogle Scholar
  20. 20.
    T. E. Sukhanova, T. A. Kuznetsova, M. E. Vylegzhanina, A. L. Didenko, D. A. Kuznetsov, V. M. Svetlichnyi, T. I. Zubar, V. A. Lapitskaya, K. A. Sudzilouskaya, A. Ya. Volkov, A. A. Kutin, V. V. Kudryavtsev, S. A. Chizhik, Nanotekhnologiya: Nauka i proizvodstvo [Nanotechnologies: Science and Production], 2017, 55–64 (in Russian); http://Luran.ru/webcab/system/files/ journalspdf/nanotehnologii-nauka-i-proizvodstvo/nan-otehnologii-nauka-i-proizvodstvo-2017-n-4/20174.pdf.Google Scholar
  21. 21.
    A. Kuznetsova, T. I. Zubar, V. A. Lapitskaya, K. A. Sudzilouskaya, S. A. Chizhik, A. L. Didenko, V. M. Svetlichnyi, M. E. Vylegzhanina, V. V. Kudryavtsev, T. E. Sukhanova, IOP Conf. Ser: Mater. Sci. and Engineering, 2017, 256, 1–6; DOI: 10.1088/1757-899X/256/1/012022.CrossRefGoogle Scholar
  22. 22.
    E. Vasilyeva, A. Nasibulin, O. Tolochko, A. Rudskoy, A. Sachdev, X. Xiao, Z. Phys. Chem., 2015, 229, 1429–1437; DOI: 10.1515/zpch-2015-0573.CrossRefGoogle Scholar
  23. 23.
    T. Zorba, K. Chrissafis, K. M. Paraskevopoulos, D. N. Bikiaris, Polymer Degradation and Stability, 2007, 92, 222–230;doi.org/10.1016/j.polymdegradstab.2006.11.009.CrossRefGoogle Scholar
  24. 24.
    D. B. Klinedinst, I. Yilgor, E. Yilgor, M. Zhang, G. L. Wilkes, Polymer, 2012, 53, 5358–5366; DOI: 10.1016/j.polymer.2012.08.005.CrossRefGoogle Scholar
  25. 25.
    K. N. Raftopoulos, M. Jancia, D. Aravopoulou, E. Hebda, K. Pielichowski, P. Pissis, Macromolecules, 2013, 46, 7378–7386, DOI: 10.1021/ma401417t.CrossRefGoogle Scholar
  26. 26.
    P. T. Knight, K. M. Lee, H. Qin, P. T. Mather, Biomacromolecules, 2008, 9, 2458–2467; DOI: 10.1021/bm8004935.CrossRefGoogle Scholar
  27. 27.
    T. A. Matseevich, M. N. Popova, A. A. Askadskiy, Vestn. MGSU [Proc. Moscow State Univ. Civil Eng], 2015, 50–63 (in Russian); DOI: 10.22227/1997-0935.2015.6.50-63.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. L. Didenko
    • 1
    Email author
  • V. E. Smirnova
    • 1
  • E. N. Popova
    • 1
  • G. V. Vaganov
    • 1
  • D. A. Kuznetcov
    • 1
  • V. M. Svetlichnyi
    • 1
  • O. V. Tolochko
    • 2
  • E. S. Vasilyeva
    • 2
  • V. E. Yudin
    • 1
  • V. V. Kudryavtsev
    • 1
  1. 1.Institute of Macromolecular Compounds of the Russian Academy of SciencesSaint-PetersburgRussian Federation
  2. 2.Peter The Great Saint-Petersburg State UniversitySaint-PetersburgRussian Federation

Personalised recommendations