Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1532–1541 | Cite as

Photochemistry of cis,trans-[PtIV(en)(I)2(CH3COO)2] complex in aqueous solutions

  • E. M. GlebovEmail author
  • I. P. Pozdnyakov
  • I. M. Magin
  • V. P. Grivin
  • V. F. Plyusnin
  • D. B. Vasil’chenko
  • A. V. Zadesenets
  • A. A. Mel’nikov
  • S. V. Chekalin
Full Article
  • 1 Downloads

Abstract

The photochemistry of aqueous solutions of the cis,trans-[PtIV(en)(I)2(CH3COO)2] complex (1) was studied by stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy in the time interval from hundreds of femtoseconds to minutes. It is shown that the multistage photolysis, including photochemical reactions of ligand exchange and photoreduction, involves in the fi rst step the formation of the cis-[IV(en)(I)2(CH3COO)2] complex with a quantum yield of 0.3 (irradiation at 282 nm). The further ligand exchange and photoreduction reactions occur with much lower quantum yields. The photochemical exchange of the acetate ion occurs in a time interval of ~100 ps with the much slower final step, being probably the acidic dissociation of the product. The key intermediate of the first step of the process was detected in the picosecond time range. Depending on the interpretation of the key intermediate nature, two possible mechanisms of the primary photochemical process are proposed.

Key words

photochemistry diiodo-PtIV complexes UV spectroscopy. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bonnet, Dalton Trans., 2018, 47, 10330.CrossRefGoogle Scholar
  2. 2.
    S. B. Brown, E. A. Brown, I. Walker, Lancet Oncol., 2004, 5, 497.CrossRefGoogle Scholar
  3. 3.
    K. Szacilowski, W. Macyk, A. Drzewiecka-Matusek, M. Brindell, G. Stochel, Chem. Rev., 2005, 105, 2647.CrossRefGoogle Scholar
  4. 4.
    P. J. Bednarski, F. S. Mackay, P. J. Sadler, Anti-Cancer Agents Med. Chem., 2007, 7, 75.CrossRefGoogle Scholar
  5. 5.
    L. Ronconi, P. J. Sadler, Coord. Chem. Rev., 2007, 251, 1633.CrossRefGoogle Scholar
  6. 6.
    N. A. Smith, P. J. Sadler, Philos. Trans. R. Soc. Lond. A, 2013, 371, 20120519.CrossRefGoogle Scholar
  7. 7.
    S. Medici, M. Peana, V. M. Nurchi, J. A. Lachowicz, G. Crisponi, M. A. Zoroddu, Coord. Chem. Rev., 2015, 284, 329.CrossRefGoogle Scholar
  8. 8.
    T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev., 2016, 116, 3436.CrossRefGoogle Scholar
  9. 9.
    A. L. Harris, Nat. Rev. Cancer., 2002, 2, 38CrossRefGoogle Scholar
  10. 10.
    N. A. Kratochwill, M. Zabel, K.-J. Range, P. J. Bednarski, J. Med. Chem., 1996, 39, 2499CrossRefGoogle Scholar
  11. 11.
    N. A. Kratochwill, J. A. Parkinson, P. Bednarski, P. J. Sadler, Angew. Chem., Int. Ed. Engl., 1999, 38, 1460CrossRefGoogle Scholar
  12. 12.
    N. A. Kratochwill, Z. Guo, P. del Socorro Murdoch, J. A. Parkinson, P. J. Bednarski, P. J. Sadler, J. Am. Chem. Soc., 1998, 120, 8253CrossRefGoogle Scholar
  13. 13.
    F. S. Mackay, J. A. Woods, H. Moseley, J. Ferguson, A. Dawson, S. Parsons, P. J. Sadler, Chem. Eur. J., 2006, 12, 3155CrossRefGoogle Scholar
  14. 14.
    J. Pracharova, L. Zerzankova, J. Stepankova, O. Novakova, N. J. Farrer, P. J. Sadler, V. Brabec, J. Kasparkova, Chem. Res. Toxicol., 2012, 25, 1099CrossRefGoogle Scholar
  15. 15.
    A. F. Westendorf, J. A. Woods, K. Korpis, N. J. Farrer, L. Salassa, K. Robinson, V. Appleyard, K. Murray, R. Grunert, A. M. Thompson, P. J. Sadler, P. J. Bednarski, Mol. Cancer Ther., 2012, 11, 1894CrossRefGoogle Scholar
  16. 16.
    A. A. Shushakov, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, S. V. Chekalin, E. M. Glebov, Dalton Trans., 2017, 46, 9440CrossRefGoogle Scholar
  17. 17.
    E. M. Glebov, V. P. Grivin, D. B. Vasilchenko, A. V. Zadesenets, V. F. Plyusnin, High Energy Chem., 2017, 51, 409CrossRefGoogle Scholar
  18. 18.
    E. M. Glebov, I. P. Pozdnyakov, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, I. M. Magin, V. P. Grivin, S. V. Chekalin, V. F. Plyusnin, J. Photochem. Photobiol. A: Chem., 2018, 354, 78CrossRefGoogle Scholar
  19. 19.
    S. G. Matveeva, A. A. Shushakov, I. P. Pozdnyakov, V. P. Grivin. V. F. Plyusnin, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, S. V. Chekalin, E. M. Glebov, Photochem. Photobiol. Sci., 2018, 17, 1222CrossRefGoogle Scholar
  20. 20.
    E. Sosnin, T. Oppenlander, V. Tarasenko, J. Photochem. Photobiol. C: Photochem. Rev., 2006, 7, 145CrossRefGoogle Scholar
  21. 21.
    I. P. Pozdnyakov, V. F. Plyusnin, V. P. Grivin, D. Yu. Vorobyev, N. M. Bazhin, E. Vauthey, J. Photochem. Photobiol. A: Chem., 2006, 182, 75CrossRefGoogle Scholar
  22. 22.
    S. V. Chekalin, Phys. Usp., 2006, 49, 634CrossRefGoogle Scholar
  23. 23.
    E. M. Glebov, I. P. Pozdnyakov, V. P. Chernetsov, V. P. Grivin, A. B. Venediktov, A. A. Melnikov, S. V. Chekalin, V. F. Plyusnin, Russ. Chem. Bull., 2017, 66, 418CrossRefGoogle Scholar
  24. 24.
    N. Tkachenko, PyG Tools for Spectroscopy Data Analysis. User’s Guide, 2009, http://butler.cc.tut.fi/~tkatchen/prog/users_guide.pdf Google Scholar
  25. 25.
    L. Palfrey, T. F. Heinz, J. Opt. Soc. Am. B, 1985, 2, 674CrossRefGoogle Scholar
  26. 26.
    W. D. Blanchard, W. R. Mason, Inorg. Chim. Acta, 1978, 28, 159CrossRefGoogle Scholar
  27. 27.
    A. S. Rury, R. J. Sension, Chem. Phys., 2013, 422, 220CrossRefGoogle Scholar
  28. 28.
    I. L. Zheldakov, M. N. Ryazantsev, A. N. Tarnovsky, J. Phys. Chem. Lett., 2011, 2, 1540CrossRefGoogle Scholar
  29. 29.
    S. M. Matveev, D. S. Budkina, I. L. Zheldakov, M. R. Phelan, Ch. M. Hicks, A. N. Tarnovsky, J. Chem. Phys., 2019, 150, 054302CrossRefGoogle Scholar
  30. 30.
    A. Vlcek, Jr., Coord. Chem. Rev., 2000, 200–202, 933CrossRefGoogle Scholar
  31. 31.
    E. A. Juban, J. K. McCusker, J. Am. Chem. Soc., 2005, 127, 6857CrossRefGoogle Scholar
  32. 32.
    C. K. Jorgensen, Mol. Phys., 1959, 2, 309CrossRefGoogle Scholar
  33. 33.
    A. V. Litke, I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2009, 477, 304CrossRefGoogle Scholar
  34. 34.
    E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Photochem. Photobiol. Sci., 2011, 10, 1709CrossRefGoogle Scholar
  35. 35.
    I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2007, 442, 78CrossRefGoogle Scholar
  36. 36.
    E. M. Glebov, I. P. Pozdnyakov, S. G. Matveeva, A. A. Melnikov, S. V. Chekalin, M. V. Rogozina, V. V. Yudanov, V. P. Grivin, V. F. Plyusnin, Photochem. Photobiol. Sci., 2017, 16, 220CrossRefGoogle Scholar
  37. 37.
    M. V. Rogozina, V. V. Yudanov, R. G. Fedunov, I. P. Pozdnyakov, A. A. Melnikov, S. V. Chekalin, E. M. Glebov, Photoche m. Photobiol. Sci., 2018, 17, 18CrossRefGoogle Scholar
  38. 38.
    M. V. Rogozina, S. G. Matveeva, E. M. Glebov, R. G. Fedunov, Photochem. Photobiol. Sci., 2019, 18, 1122–1129; DOI: 10.1039/C8PP00553B.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • E. M. Glebov
    • 1
    • 2
    Email author
  • I. P. Pozdnyakov
    • 1
    • 2
  • I. M. Magin
    • 1
  • V. P. Grivin
    • 1
    • 2
  • V. F. Plyusnin
    • 1
    • 2
  • D. B. Vasil’chenko
    • 2
    • 3
  • A. V. Zadesenets
    • 2
    • 3
  • A. A. Mel’nikov
    • 4
    • 5
  • S. V. Chekalin
    • 4
  1. 1.V. V. Voevodsky Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation
  3. 3.A. V. Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussian Federation
  4. 4.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussian Federation
  5. 5.Faculty of PhysicsNational Research University Higher School of EconomicsMoscowRussian Federation

Personalised recommendations