Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1510–1519 | Cite as

Transition state structure of the reaction of homolytic dissociation of the C-N bond and competition between dif erent mechanisms of the primary act of gas-phase monomolecular decomposition of nitrobenzene

  • E. V. NikolaevaEmail author
  • D. L. Egorov
  • D. V. Chachkov
  • A. G. Shamov
  • G. M. Khrapkovskii
Full Article
  • 2 Downloads

Abstract

Various mechanisms of the primary act of gas-phase monomolecular thermal decomposition of nitrobenzene were studied theoretically. The following reactions were considered: radical decomposition with dissociation of the C-N bond, nitro-nitrite rearrangement to trans-phenyl nitrite and cis-phenyl nitrite, elimination of nitrous acid, as well as formation of 6(S)-7-oxa-8-azabicyclo[4.2.0]octa-1(8),2,4-triene 8-oxide were studied theoretically. Calculations were carried out for different temperatures using a number of density functional theory methods (B3LYP, wB97XD, CAM-B3LYP, MN12L, and PBE0) and basic sets (6-31G(d,p) and 6-31+G(2df,p)). The transition state of homolytic dissociation of the C-N bond was localized using the method of search for the structure corresponding to maximum value of the Gibbs free energy along the reaction coordinate. The structure thus found was used to evaluate the rate constants and the activation parameters at different temperatures. It was shown that not only radical decomposition, but also isomerization to trans-phenyl nitrite (at low temperatures) and cis-phenyl nitrite (at high temperatures) can contribute to the effective rate constant.

Key words

nitrobenzene gas-phase thermal decomposition quantum chemical calculations homolytic bond dissociation nitro-nitrite rearrangement bicyclization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Soldatenkov, Le Tuan Anh, Hieu Hong Truong, Osnovy organicheskoy khimii vysokoenergeticheskikh veshchestv i materialov [Foundations of Organic Chemistry of Energetic Substances and Materials], Knowledge Publishing House, Hanoi, 2013, 21 pp. (in Russian).Google Scholar
  2. 2.
    A. F. Ilyushchenko, E. E. Petyushik, A. L. Rak, S. L. Evmenenko, T. A. Molodyakova, Primenenie v promy shlennosti vysokoenergeticheskikh vzryvchatykh veshchestv: spravochnoe posobie [Industrial Applications of High-Energy Explosives: A Handbook], Belaruskaya Navuka, Minsk, 2017, 283 pp. (in Russian).Google Scholar
  3. 3.
    R. S. Stepanov, L. A. Kruglyakova, A. M. Astakhov, Comb. Explos. Shock Waves (Engl. Transl.), 2006, 42, 63.CrossRefGoogle Scholar
  4. 4.
    Yu. Ya. Maksimov, J. Phys. Chem. USSR (Engl. Transl.), 1969, 43, 386.Google Scholar
  5. 5.
    Yu. A. Lebedev, E. A. Miroshnichenko, Yu. K. Knobel, Termokhimiya nitrosoedineniy [Thermochemistry of Nitro Compounds], Nauka, Moscow, 1970, 168 pp. (in Russian).Google Scholar
  6. 6.
    V. G. Matveev, G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1975, 24, 697.CrossRefGoogle Scholar
  7. 7.
    V. G. Matveev, V. V. Dubikhin, G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1978, 27, 675.CrossRefGoogle Scholar
  8. 8.
    E. Yu. Orlova, Khimiya I tekhnologiya brizantnykh vzryvcha-tykh veshcnestv. Uchebmik dlya vuzov [Chemistry and Technology of Disruptive Explosives. A Textbook], Khimiya, Leningrad, 1981, 312 pp. (in Russian).Google Scholar
  9. 9.
    I. F. Shis hkov, N. I. Sadova, V. P. Novikov, L. V. Vilkov, J. Struct. Chem., 1984, 25, 260.CrossRefGoogle Scholar
  10. 10.
    A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, J. Phys. Chem., 1985, 89, 4809.CrossRefGoogle Scholar
  11. 11.
    W. Tsang, D. Robaugh, W.G. Mallard, J. Phys. Chem., 1986, 90, 5968.CrossRefGoogle Scholar
  12. 12.
    V. A. Koroban, Yu. Ya. Maksimov, Kinet. Catal. (Engl. Transl.), 1990, 31, 677.Google Scholar
  13. 13.
    T. B. Brill, K. James, Chem. Rev., 1993, 93, 2667.CrossRefGoogle Scholar
  14. 14.
    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, V. A. Strunin, Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov [Thermal Decomposition and Combustion of Ex-plo siv es and Propellants], Nauka, Moscow, 1996, 223 pp. (in Russian).Google Scholar
  15. 15.
    G. M. Khrapkovskii, G. N. Marchenko, A. G. Shamov, Vliyanie molekulyarnoy struktury na kineticheskie parametry monomolekulyarnogo raspada C- i O-nitrosoedineniy [Molecular Structure Ef ect on the Kinetic Parameters of Mono-molecular Decom positio of C-Nitro and O-Nitro Compounds], FEN, Kazan, 1997, 222 pp. (in Russian).Google Scholar
  16. 16.
    Y. Ohno, M. Kouno, S. Kawaguchi, Y. Akutsu, M. Arai, M. Tamura, J. Japan Explos. Soc., 1997, 58, 277.Google Scholar
  17. 17.
    V. M. Vinogradov, I. L. Dalinger, A. M. Starosotnikov, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 464.CrossRefGoogle Scholar
  18. 18.
    I. L. Dalinger, T. I. Cherkasova, S. S. Vorob'ev, A. V. Aleksandrov, G. P. Popova, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 2401.CrossRefGoogle Scholar
  19. 19.
    O. V. Serushkina, M. D. Dutov, A. N. Solkan, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 2406.CrossRefGoogle Scholar
  20. 20.
    S. A. Shevelev, I. L. Dalinger, T. I. Cherkasova, Tetrahedron Lett., 2001, 42, 8539.CrossRefGoogle Scholar
  21. 21.
    V. A. Tartakovskii, S. A. Shevelev, M. D. Dutov, O. V. Serushkina, V. V. Kachala, Russ. J. Org. Chem., 2003, 38, 397.CrossRefGoogle Scholar
  22. 22.
    J. Clarkson, W. Ewen Smith, J. Mol. Struct., 2003, 655, 413.CrossRefGoogle Scholar
  23. 23.
    A. L. Rusanov, L. G. Komarova, D. Yu. Likhatchev, S. A. Shevelev, V. A. Tartakovsky, Russ. Chem. Rev., 2003, 72, 899.CrossRefGoogle Scholar
  24. 24.
    M.-F. Lin, Yu. T. Lee, Ch.-K. Ni, Sh. Xu, M. C. Lin, J. Chem. Phys., 2007, 126, 064310.CrossRefGoogle Scholar
  25. 25.
    O. V. Dorofeeva, N. F. Moiseeva, Russ. J. Phys. Chem., 2008, 82, 136.CrossRefGoogle Scholar
  26. 26.
    G. M. Khrapkovskii, A. G. Shamov, E. V. Nikolaeva, D. V. Chachkov, Russ. Chem. Rev., 2009, 78, 903.CrossRefGoogle Scholar
  27. 27.
    V. L. Korolev, T. S. Pivina, A. B. Sheremetev, A. A. Porollo, T. V. Petukhova, V. P. Ivshin, Russ. Chem. Rev., 2009, 78, 945.CrossRefGoogle Scholar
  28. 28.
    V. V. Nedel'ko, B. L. Korsunskii, N. N. Makhova, N. V. Chukanov, T. S. Larikova, I. V. Ovchinnikov, V. A. Tartakov-sky, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 2028.CrossRefGoogle Scholar
  29. 29.
    L. P. Smirnov, Russ. Chem. Rev., 79, 421.Google Scholar
  30. 30.
    V. G. Matveev, Russ. J. Phys. Chem. B, 2010, 4, 719.CrossRefGoogle Scholar
  31. 31.
    M. H. Keshavarz, J. Hazardous Mat., 2011, 190, 330.CrossRefGoogle Scholar
  32. 32.
    S. P. Korolev, O. V. Kondrashina, D. S. Druzhilovsky, A. M. Starosotnikov, M. V. Dutov, M. A. Bastrakov, I. L. Dalinger, D. A. Filinov, S. A. Shevelev, V. V. Poroikov, Y. Y. Agapkina, M. B. Gottikh, Acta Naturae, 2013, 5, 63.CrossRefGoogle Scholar
  33. 33.
    J. Li, H. Liu, X. Huo, P. Gramatica, Mol. Inf., 2013, 32, 193.CrossRefGoogle Scholar
  34. 34.
    R. V. Tsyshevsky, O. Sharia, M. M. Kuklja, Molecules, 2016, 21, 236.CrossRefGoogle Scholar
  35. 35.
    S. P. Korolev, M. A. Pustovarova, A. M. Starostnikov, M. A. Bastrakov, Yu. Yu. Agapkina, S. A. Shevelev, M. B. Gottikh, Biochemistry (Moscow), Sup. Ser. B: Biomed. Chem. (Engl. Transl.), 2017, 11, 286.CrossRefGoogle Scholar
  36. 36.
    Y. Peng, X. Xiu, G. Zhu, Y. Yang, J. Phys. Chem. A, 2018, 122, 8336; DOI: 10.1021/acs.jpca.8b06458.CrossRefGoogle Scholar
  37. 37.
    G. M. Khrapkovskii, E. A. Ermakova, V. A. Rafeev, Russ. Chem. Bull. (Int. Ed.), 1994, 43, 1999.CrossRefGoogle Scholar
  38. 38.
    G. M. Khrapkovskii, E. V. Nikolaeva, D. V. Chachkov, A. G. Shamov, Russ. J. Gen. Chem., 74, 908.Google Scholar
  39. 39.
    O. V. Dorofeeva, M. A. Suntsova, I. I. Marochkin, Gorenie i vzryv [Combustion and Explosion], 2013, 6, 243 (in Russian).Google Scholar
  40. 40.
    O. V. Dorofeeva, Yu. V. Vishnevskiy, N. Vogt, J. Vogt, L. V. Khristenko, S. V. Krasnoshchekov, I. F. Shishkov, I. Hargittai, L. V. Vilkov, J. Struct. Chem., 2007, 18, 739.CrossRefGoogle Scholar
  41. 41.
    S. P. Verevkin, V. N. Emel'yanenko, V. Diky, O. V. Dorofe-eva, J. Chem. Thermodynamics, 2014, 73, 163.CrossRefGoogle Scholar
  42. 42.
    O. V. Dorofeeva, M. A. Suntsova, J. Chem. Thermodynamics, 2013, 58, 221.CrossRefGoogle Scholar
  43. 43.
    E. A. Mirochnicheno, T. S. Kon'kova, Y. N. Matyushin, A. A. Berlin, L. L. Pashchenko, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 1977.CrossRefGoogle Scholar
  44. 44.
    A. S. Smirnov, T. S. Pivina, Gorenie i vzryv [Combustion and Explosion], 2016, 9, Issue 3, 140 (in Russian).Google Scholar
  45. 45.
    A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2315.CrossRefGoogle Scholar
  46. 46.
    D. L. Egorov, A. G. Shamov, G. M. Khrapkovskii, Vestn. tekhnol. un-ta [Herald of Kazan Technological University], 2015, 8, Issue 21, 12 (in Russian).Google Scholar
  47. 47.
    V. V. Turovtsev, Yu. D. Orlov, Russ. J. Phys. Chem. B, 2014, 8, 464.CrossRefGoogle Scholar
  48. 48.
    IC No. 2011613791; Byul. izobret. [Bull. Invent.], 2011 (in Russian).Google Scholar
  49. 49.
    S. K. Ignatov, Moltran v.2.5 — programma molekulyuarnoy vizualizatsii i termodinamicheskikh raschetov [Moltran Version 2.5, a Program for Molecular Visualization and Thermodynamic Calculations], Nizhny Novgorod University, 2004; http://www.qchem.unn.ru/moltran/.Google Scholar
  50. 50.
    F. Visentin, H. Briggeler, O. Ubrich, Hydrogenation of Nitrobenzene to Aniline, Mettler-Toledo Auto Chem Inc., Print. Switz. Marketing RC/ALR, MD 21046, 2007, 3, 7 pp.Google Scholar
  51. 51.
    Sh. Yamabe, Sh. Yamazaki, J. Phys. Org. Chem., 2016, 29, 361.CrossRefGoogle Scholar
  52. 52.
    I. A. Gorbunov, S. E. Latyshova, E. A. Chaplyuk, Molodoy uchenyj [Young Scientist], 2018, 17, 15 (in Russian).Google Scholar
  53. 53.
    G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2016, 52, 791.CrossRefGoogle Scholar
  54. 54.
    G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2017, 53, 999.CrossRefGoogle Scholar
  55. 55.
    A. G. Turner, L. P. Davis, J. Am. Chem. Soc., 1984, 106, 5447.CrossRefGoogle Scholar
  56. 56.
    P. C. Chen, W. Lo, K. H. Hu, J. Mol. Struct. (Theochem), 1997, 389, 91.CrossRefGoogle Scholar
  57. 57.
    P. C. Chen, W. Lo, J. Mol. Struct. (Theochem), 1997, 397, 21.CrossRefGoogle Scholar
  58. 58.
    Energii razryva khimicheskikh svyazey, potentsialy ionizatsii i srodstvo k elektronu [A Handbook on Chemical Bond Dissociation Energies, Ionization Potentials, and Electron Af nities.], Eds L. V. Gurvich, G. V. Karachevtsev, V. I. Kondratyev, Yu. A. Lebedev, V. A. Medvedev, V. K. Panov, Yu. S. Khodeev, Nauka, Moscow, 1974, 351 pp. (in Russian).Google Scholar
  59. 59.
    P. C. Chen, S. C. Chen, Computers & Chemistry, 2002, 26, 171.CrossRefGoogle Scholar
  60. 60.
    P. C. Chen, Y. C. Chieh, J. Mol. Struct. (Theochem), 2002, 583, 173.CrossRefGoogle Scholar
  61. 61.
    T. Glenewinkel-Meyer, F. F. Crim, J. Mol. Struct. (Theochem), 1995, 337, 209.CrossRefGoogle Scholar
  62. 62.
    D. D. Sharipov, D. L. Egorov, A. G. Shamov, G. M. Khrap-kovskii, D. V. Chachkov, Russ. J. Gen. Chem., 2011, 81, 2273.CrossRefGoogle Scholar
  63. 63.
    G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, R. V. Tsyshevsky, Comput. Theor. Chem., 2013, 1011, 37.CrossRefGoogle Scholar
  64. 64.
    G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, Nguyen Van Bo, R. V. Tsyshevsky, Comput. Theor. Chem., 2013, 1017, 7.CrossRefGoogle Scholar
  65. 65.
    B. L. Korsunskii, G. M. Nazin, V. R. Stepanov, A. A. Fedotov, Kinet. Catal. (Engl. Transl.), 1993, 34, 691.Google Scholar
  66. 66.
    L. Cooper, L. G. Shpinkova, E. E. Rennie, D. M. P. Holland, D. A. Shaw, Int. J. Mass. Spectrom., 2001, 207, 223.CrossRefGoogle Scholar
  67. 67.
    Sh. Xu, M. C. Lin, J. Phys. Chem. B., 2005, 109, 8367.CrossRefGoogle Scholar
  68. 68.
    C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, Int. J. Mass Spectrom. Ion Proc., 1994, 135, 229.CrossRefGoogle Scholar
  69. 69.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  70. 70.
    E. V. Nikolaeva, A. G. Shamov, G. M. Khrapkovskii, Kh. E. Kharlampidi, Russ. J. Gen. Chem., 2002, 72, 748.CrossRefGoogle Scholar
  71. 71.
    E. V. Nikolaeva, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Russ. Chem. Bull. (Int. Ed.), 2018, 67, 274.CrossRefGoogle Scholar
  72. 72.
    G. M. Khrapkovskii, A. G. Shamov, R. V. Tsyshevsky, D. V. Chachkov, D. L. Egorov, I. V. Aristov, Comput. Theor. Chem., 2011, 966, 265.CrossRefGoogle Scholar
  73. 73.
    A. G. Shamov, E. V. Nikolaeva, G. M. Khrapkovskii, Russ. J. Appl. Chem., 2009, 82, 1741.CrossRefGoogle Scholar
  74. 74.
    G. G. Garifzianova, R. V. Tsyshevskii, A. G. Shamov, G. M. Khrapkovskii, Int. J. Quant. Chem., 2007, 107, 2489.CrossRefGoogle Scholar
  75. 75.
    S. Ya. Umanskii, Teoriya elementarnykh khimicheskikh reaktsiy [Theory of Elementary Chemical Reactions], Intellekt, Moscow, 2009, 408 pp. (in Russian).Google Scholar
  76. 76.
    D. G. Truhlar, B. C. Garett, Ann. Rev. Phys. Chem., 1984, 35, 159.CrossRefGoogle Scholar
  77. 77.
    D. G. Truhlar, B. C. Garett, S. J. Klippenstein, J. Phys. Chem., 1996, 100, 12771.CrossRefGoogle Scholar
  78. 78.
    S. H. Robertson, A. F. Wagner, D. M. Wardlaw, J. Chem. Phys., 1995, 103, 2917.CrossRefGoogle Scholar
  79. 79.
    A. Kuwae, K. Machida, Spectrochim. Acta, 1979, 35, 27.CrossRefGoogle Scholar
  80. 80.
    J. D. Laposa, Spect rochim. Acta, 1979, 35, 65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • E. V. Nikolaeva
    • 1
    Email author
  • D. L. Egorov
    • 1
  • D. V. Chachkov
    • 2
  • A. G. Shamov
    • 1
  • G. M. Khrapkovskii
    • 1
  1. 1.Kazan National Research Technological UniversityKazanRussian Federation
  2. 2.Kazan Department of Joint Supercomputer Center of the Russian Academy of Sciences — Branch of the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”KazanRussian Federation

Personalised recommendations