Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1102–1108 | Cite as

Specific properties of hydroxyapatite as a potential transporter of copper ions and its complexes

  • M. A. OrlovaEmail author
  • A. L. Nikolaev
  • T. P. Trofimova
  • A. V. Severin
  • A. V. Gopin
  • N. S. Zolotova
  • V. K. Dolgova
  • A. P. Orlov
Full Article


Modification of the cocrystallization method for producing hydroxyapatite (HAP) and an HAP-Cu combination to the enzymatic method using alkaline phosphatase leads to a change in the morphology, sizes, sorption capacity, type of particles, and conformity with the Langmuir and Freundlich models. A positive factor of the enzyme usage is an increase in the sorption capacity and the possibility to strictly control the particle sizes depending on the concentration of the enzyme used. The L2CuCl4 complex was synthesized on the basis of 2-aminopyrimidine (L), which is the precursor of many anticancer drugs, and the possibilities of introducing L2CuCl4 into the HAP composite were considered. The cytotoxicity data for various HAP and L2CuCl4 composites with respect to various types of leukemic cells as compared to lymphocytes of healthy donors showed antileukemic activity of the copper complex and the absence of HAP cytotoxicity in a wide range of concentrations.

Key words

hydroxyapatite alkaline phosphatase copper zinc adsorption leukemic cell lines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Sun, H. Zhou, J. Lee, Acta Biomaterialia, 2011, 7, 3813.CrossRefGoogle Scholar
  2. 2.
    D. W. Hutmacher, J. T. Schantz, C. X. F. Lam, K. C. Tan, T. C. Lim, J. Tissue Eng. Regenerative Med., 2007, 1, 245.CrossRefGoogle Scholar
  3. 3.
    R. Tabti, N. Tounsi, C. Gaiddon, E. Bentouhami, L. Desaubry, Med. Chem. (Los Angeles), 2017, 7, 875.CrossRefGoogle Scholar
  4. 4.
    J. J. R. Silva, R. J. P. Williams, The Biological Chemistry of Elements. The Inorganic Chemistry of Life, Clarendon Press, Oxford, 1994.Google Scholar
  5. 5.
    B. Singh, J. Mishra, K. S. Pitre, A. Pradhan, P. Soni, Int. J. Biotechnol. Wellness Industries, 2013, 2, 39.Google Scholar
  6. 6.
    M. Plotek, K. Dudek, A. Kyziol, Chemik., 2013, 12, 1181.Google Scholar
  7. 7.
    J. P. Laussac, B. Sarker, Biochemistry, 1984, 23, 2832.CrossRefGoogle Scholar
  8. 8.
    Y. Lee, Y. Lin, C. Lima, J. Chin. Chem. Soc., 2014, 61, 142.CrossRefGoogle Scholar
  9. 9.
    M. Tabata, B. Sarkar, Can. J. Chem., 1985, 63, 3111.CrossRefGoogle Scholar
  10. 10.
    J. Lee, J. R. Prohaska, D. J. Thiele, Proc. Natl. Acad. Sci. USA, 2001, 98, 6842.CrossRefGoogle Scholar
  11. 11.
    J. H. Freedman, M. R. Ciriolo, J. Peisach, J. Biol. Chem., 1989, 264, 5598.Google Scholar
  12. 12.
    M. A. Pogosova, A. A. Eliseev, P. E. Kazin, F. Azarmi, Dyes and Pigments, 2017, 141, 209.CrossRefGoogle Scholar
  13. 13.
    T. P. Trofimova, M. A. Orlova, A. V. Severin, E. S. Shalamova, A. N. Proshin, A. P. Orlov, Russ. Chem. Bull., 2018, 67, 768.CrossRefGoogle Scholar
  14. 14.
    M. Othmani, H. Bachoua, Y. Ghandour, A. Aissa, M. Debbabi, Mat. Res. Bull., 2018, 97, 560.CrossRefGoogle Scholar
  15. 15.
    S. Kadouchea, H. Zemmouri, K. Benaoumeura, N. Drouichea, P. Sharrockd, H. Lounici, Proc. Eng., 2012, 33, 377.CrossRefGoogle Scholar
  16. 16.
    A. Corami, F. D'Acapito, S. Mignardi, V. Ferrini, Mater. Sci. Enng., 2008, 149, 209.CrossRefGoogle Scholar
  17. 17.
    I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevol'nov, V. N. Rudin, Dokl. Akad. Nauk, 2000, 373, 355 [Dokl. Chem. (Engl. Transl.), 2000].Google Scholar
  18. 18.
    A. V. Severin, D. A. Pankratov, Zh. Neorg. Khim., 2016, 61, 1 [Russ. J. Inorg. Chem. (Engl. Transl.), 2016, 61].Google Scholar
  19. 19.
    C. Zanchini, R. D. Willett, Inorg. Chem., 1990, 29, 3027.CrossRefGoogle Scholar
  20. 20.
    M. A. Orlova, E. Yu. Osipova, S. A. Roumiantsev, S. P. Ashurko, Russ. Chem. Bull., 2012, 61, 405.CrossRefGoogle Scholar
  21. 21.
    A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, J. Inorg. Biochem., 1995, 58, 49.CrossRefGoogle Scholar
  22. 22.
    S. Brundavanam, G. Eddy, J. Poinern, D. Fawcett, Am. J. Mater. Sci., 2015, 5, 31.Google Scholar
  23. 23.
    O. Livitska, N. Strutynska, I. Zatovsky, A. Baeda, Werkstofftech., 2016, 47, 85.CrossRefGoogle Scholar
  24. 24.
    L. Cheng, F. Ye, R. Yang, Acta Biomaterialia, 2010, 6, 1569.CrossRefGoogle Scholar
  25. 25.
    A. V. Severin, M. A. Orlova, T. P. Trofimova, E. S. Shalamova, I. A. Ivanov, Russ. Chem. Bull., 2017, 66, 9.CrossRefGoogle Scholar
  26. 26.
    A. P. Orlov, T. P. Trofimova, E. Yu. Osipova, A. N. Proshin, M. A. Orlova, Russ. Chem. Bull., 2017, 66, 1860.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • M. A. Orlova
    • 1
    • 2
    • 3
    Email author
  • A. L. Nikolaev
    • 1
  • T. P. Trofimova
    • 1
    • 4
  • A. V. Severin
    • 1
  • A. V. Gopin
    • 1
  • N. S. Zolotova
    • 1
  • V. K. Dolgova
    • 1
  • A. P. Orlov
    • 1
  1. 1.Chemical DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Department of Biochemistry and PharmacologyDmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
  3. 3.Medical FacultyN. I. Pirogov Russian National Research Medical UniversityMoscowRussian Federation
  4. 4.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations