Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1088–1095 | Cite as

Immobilization of fluorescent protein TagGFP2 on Fe3O4-based magnetic nanoparticles

  • A. M. DeminEmail author
  • M. S. Valova
  • A. G. Pershina
  • V. P. Krasnov
Full Article


The immobilization of fluorescent protein TagGFP2 on Fe3O4-based magnetic nano particles (MNPs), preliminarily functionalized with 3-aminopropylsilane and N-(phosphonomethyl) iminodiacetic acid (PMIDA), was studied. Protein binding to MNPs depending on the nature of the surface functional groups, the medium, and the presence of a coupling agent, namely, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), was studied using fluorimetry, UV and IR spectroscopy. It was shown that protein immobilization can occur by both non-covalent and covalent binding with surface groups of MNPs. The best results (up to 150 μg of TagGFP2 per 1 mg of MNPs) were obtained for MNPs preliminarily functionalized with PMIDA and using EDC. The results of this study can be used for the design of imaging agents having both magnetic and optical properties to be applied in biomedicine.

Key words

magnetic nanoparticles TagGFP2 fluorimetry UV spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Veiseh, J. Gunn, M. Zhang, Adv. Drug Deliv. Rev., 2010, 62, 284.CrossRefGoogle Scholar
  2. 2.
    C. Xu, S. Sun, Adv. Drug Deliv. Rev., 2013, 65, 732.CrossRefGoogle Scholar
  3. 3.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064.CrossRefGoogle Scholar
  4. 4.
    Y.-X. J. Wang, Quant. Imaging Med. Surg., 2011, 1, 35.Google Scholar
  5. 5.
    J. Gao, H. Gu, Xu, Acc. Chem. Res., 2009, 42, 1097.CrossRefGoogle Scholar
  6. 6.
    A. M. Demin, Yu. V. Kuznetsova, V. P. Krasnov, A. A. Rempel, Dokl. Chem., 2016, 467, 113.CrossRefGoogle Scholar
  7. 7.
    A. M. Demin, M. V. Ulitko, A. S. Minin, Yu. V. Kuznetsova, S. V. Rempel, V. P. Krasnov, A. A. Rempel, Dokl. Chem., 2016, 467, 118.CrossRefGoogle Scholar
  8. 8.
    C.-W. Hung, T. Holomana, P. Kofinas, W. E. Bentley, Biochem. Eng. J., 2008, 38, 164.CrossRefGoogle Scholar
  9. 9.
    I. F. Nata, N. S. El-Safory, C. K. Lee, ACS Appl. Mater. Interfaces, 2011, 3, 3342.CrossRefGoogle Scholar
  10. 10.
    I. S. Lee, N. Lee, J. Park, B. H. Kim, Y.-W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik, T. Hyeon, J. Am. Chem. Soc., 2006, 128, 10658.CrossRefGoogle Scholar
  11. 11.
    B. J. Kim, Y. Piao, N. Lee, Y. Park, I.-H. Lee, J.-H. Lee, S. R. Paik, T. Hyeon, Adv. Mater., 2010, 22, 57.CrossRefGoogle Scholar
  12. 12.
    S. Engin, V. Trouillet, C. M. Franz, A. Welle, M. Bruns, D. Wedlich, Langmuir, 2010, 26, 6097.CrossRefGoogle Scholar
  13. 13.
    Z.-F. Gan, J.-S. Jiang, Y. Yang, B. Du, M. Qian, P. Zhang, J. Biomed. Mater. Res. A., 2008, 84A, 10.CrossRefGoogle Scholar
  14. 14.
    O. M. Subach, I. S. Gundorov, M. Yoshimura, F. V. Subach, J. Zhang, D. Gruenwald, E. A. Souslova, D. M. Chudakov, V. V. Verkhusha, Chem. Biol., 2008, 15, 1116.CrossRefGoogle Scholar
  15. 15.
    A. M. Demin, A. G. Pershina, K. V. Nevskaya, L. V. Efimova, N. N. Shchegoleva, M. A. Uimin, D. K. Kuznetsov, V. Ya. Shur, V. P. Krasnov, L. M. Ogorodova, RSC Adv., 2016, 6, 60196.CrossRefGoogle Scholar
  16. 16.
    A. M. Demin, A. G. Pershina, V. V. Ivanov, K. V. Nevskaya, O. B. Shevelev, A. S. Minin, I. V. Byzov, A. E. Sazonov, V. P. Krasnov, L. M. Ogorodov, Inter. J. Nanomed., 2016, 11, 4451.CrossRefGoogle Scholar
  17. 17.
    A. M. Demin, A. V. Mekhaev, A. A. Esin, D. K. Kuznetsov, P. S. Zelenovskiy, V. Y. Shur, V. P. Krasnov, Appl. Surf. Sci., 2018, 440, 1196.CrossRefGoogle Scholar
  18. 18.
    A. M. Demin, A. G. Pershina, A. S. Minin, A. V. Mekhaev, V. V. Ivanov, S. P. Lezhava, A. A. Zakharova, I. V. Byzov, M. A. Uimin, V. P. Krasnov, L. M. Ogorodova, Langmuir, 2018, 34, 3449.CrossRefGoogle Scholar
  19. 19.
    A. M. Demin, A. G. Pershina, V. V. Ivanov, O. B. Shevelev, M. A. Uimin, K. V. Nevskaya, N. N. Shchegoleva, A. S. Minin, A. E. Sazonov, V. P. Krasnov, L. M. Ogorodova, Izv. Vuzov. Fiz. [Bull. of Higher Inst. Phys.], 2015, {dd58}, No. 12/2, 68 (in Russian).Google Scholar
  20. 20.
    A. M. Demin, O. V. Koryakova, V. P. Krasnov, J. Appl. Spectr., 2014, 81, 565.CrossRefGoogle Scholar
  21. 21.
    H. Fukuda, M. Arai, K. Kuwajima, Biochemistry, 2000, 39, 12025.CrossRefGoogle Scholar
  22. 22.
    T. Maniatis, E. F. Fritsch, J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1982, 2230 pp.Google Scholar
  23. 23.
    U. K. Laemmli, Nature, 1970, 227, 680.CrossRefGoogle Scholar
  24. 24.
    M. M. Bradford, Anal. Biochem., 1976, 72, 248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. M. Demin
    • 1
    Email author
  • M. S. Valova
    • 1
  • A. G. Pershina
    • 2
    • 3
  • V. P. Krasnov
    • 1
  1. 1.I. Ya. Postovsky Institute of Organic SynthesisUral Branch of the Russian Academy of SciencesEkaterinburgRussian Federation
  2. 2.Siberian State Medical UniversityTomskRussian Federation
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations