Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1067–1074 | Cite as

New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles

  • A. M. Valiyakhmetova
  • E. D. Sultanova
  • V. A. BurilovEmail author
  • S. E. Solovieva
  • I. S. Antipin
Full Article


New p-tert-butyl thiacalix[4]arene derivative in the 1,3-alternate stereoisomeric form containing two diethylenetriamine groups and pentacosa-10,12-diynoic moieties on the opposide sides of macrocyclic cavity was synthesized using the copper(i)-catalyzed azide-alkyne cycloaddition. According to the dynamic and electrophoretic light scattering data, the synthesized macrocycle forms submicron particles with the sizes 200 nm and ζ-potential equal to 43 mV. The critical aggregation concentration of the macrocycle was 0.019 mmol L−1. The obtained macrocycle intercalates into calf thymus DNA (CT DNA) to form a lipoplex. Using ethidium bromide as a fluorescent probe intercalation of obtained macrocycle into CT DNA with following formation of a lipoplex with the ζ-potential equal to −30 mV was found. The macrocycle was used for the synthesis of mixed polydiacetylene particles with N-(2-aminoethyl)pentacosa-10,12-diynamide (PCDA) as a base lipid. The highest degree of polymerization is achieved in the system with the macrocycle to PCDA ratio equal to 1 : 4. Macrocycle embedding into the polydiacetylene particles significantly increases their colorimetric response to CT DNA. The response to CT DNA as a change in the color of a solution of particles from blue to red is seen by naked eye at the CT DNA concentration starting from 20 µmol L−1, which makes the obtained particles promising for bioanalytical application.

Key words

thiacalix[4]arene polydiacetylenes DNA-sensors colorimetric sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Turner, Chem. Soc. Rev., 2013, 42, 3184.CrossRefGoogle Scholar
  2. 2.
    M. Demeunynck, C. Bailly, W. D. Wilson, DNA and RNA Binders, Eds M. Demeunynck, C. Bailly, W. D. Wilson, Wiley-VCH, Weinheim, 2003.Google Scholar
  3. 3.
    A. J. Jeffreys, V. Wilson, S. L. Thein, Nature, 1985, 314, 67.CrossRefGoogle Scholar
  4. 4.
    M. Labib, E. H. Sargent, S. O. Kelley, Chem. Rev., 2016, 116, 9001.CrossRefGoogle Scholar
  5. 5.
    J. Homola, Chem. Rev., 2008, 108, 462.CrossRefGoogle Scholar
  6. 6.
    J. Wang, Nucleic Acid. Res., 2000, 28, 3011.CrossRefGoogle Scholar
  7. 7.
    X. Chen, G. Zhou, X. Peng, J. Yoon, Chem. Soc. Rev., 2012, 41, 4610.CrossRefGoogle Scholar
  8. 8.
    M. A. Reppy, B. A. Pindzola, Chem. Commun., 2007, 42, 4317.CrossRefGoogle Scholar
  9. 9.
    Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater., 2008, 18, 701.CrossRefGoogle Scholar
  10. 10.
    E. Morin, M. Nothisen, A. Wagner, J.-S. Remy, Bioconjug. Chem., 2011, 22, 1916.CrossRefGoogle Scholar
  11. 11.
    R. R. Ibragimova, V. A. Burilov, A. R. Aimetdinov, D. A. Mironova, V. G. Evtugyn, Y. N. Osin, S. E. Solovieva, I. S. Antipin, Macroheterocycles, 2016, 9, 433.CrossRefGoogle Scholar
  12. 12.
    M. Meldal, C. W. Tornoe, Chem. Rev., 2008, 108, 2952.CrossRefGoogle Scholar
  13. 13.
    S. E. Solovieva, V. A. Burilov, I. S. Antipin, Macroheterocycles, 2017, 10, 134.CrossRefGoogle Scholar
  14. 14.
    V. Burilov, A. Valiyakhmetova, D. Mironova, R. Safiullin, M. Kadirov, K. Ivshin, O. Kataeva, S. Solovieva, I. Antipin, RSC Adv., 2016, 6, 44873.CrossRefGoogle Scholar
  15. 15.
    V. Burilov, A. Valiyakhmetova, D. Mironova, E. Sultanova, V. Evtugyn, Y. Osin, S. Katsyuba, T. Burganov, S. Solovieva, I. Antipin, New J. Chem., 2018, 42, 2942.CrossRefGoogle Scholar
  16. 16.
    J. Aguiar, P. Carpena, J. A. Molina-Bolivar, C. Carnero Ruiz, J. Coll. Interface Sci., 2003, 258, 116.CrossRefGoogle Scholar
  17. 17.
    L. S. Yakimova, D. B. Puplampu, G. A. Evtyugin, I. I. Stoikov, Russ. Chem. Bull., 2017, 66, 1515.CrossRefGoogle Scholar
  18. 18.
    Q. Guo, M. Lu, L. A. Marky, N. R. Kallenbach, Biochemistry, 1992, 31, 2451.CrossRefGoogle Scholar
  19. 19.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Quenching of Fluorescence, Kluwer Academic, New York, 1999.CrossRefGoogle Scholar
  20. 20.
    K. Liu, L. Zheng, C. Ma, R. Gostl, A. Herrmann, Chem. Soc. Rev., 2017, 46, 5147.CrossRefGoogle Scholar
  21. 21.
    W. Thongmalai, T. Eaidkong, S. Ampornpun, R. Mungkarndee, G. Tumcharern, M. Sukwattanasinitta, S. Wacharasindhu, J. Mater. Chem., 2011, 21, 16391.CrossRefGoogle Scholar
  22. 22.
    W. L. F. Armarego, C. L. L. Chai, Purifi cation of Laboratory Chemicals, Eds W. L. F. Armarego, C. L. L. Chai, Elsevier, New York, 2009.Google Scholar
  23. 23.
    N. G. Brown, R. VanderLinden, E. R. Watson, R. Qiao, C. R. R. Grace, M. Yamaguchi, F. Weissmann, J. J. Frye, P. Dube, S. Ei Cho, M. L. Actis, P. Rodrigues, N. Fujii, J. M.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. M. Valiyakhmetova
    • 1
  • E. D. Sultanova
    • 1
    • 2
  • V. A. Burilov
    • 1
    Email author
  • S. E. Solovieva
    • 1
    • 2
  • I. S. Antipin
    • 1
    • 2
  1. 1.Kazan (Volga Region) Federal UniversityKazanRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations