Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1036–1040 | Cite as

A new original approach to the design of anticancer drugs based on energy-rich quadricyclanes

  • U. M. Dzhemilev
  • A. R. Akhmetov
  • A. A. Khuzin
  • V. A. D’yakonov
  • L. U. Dzhemileva
  • M. M. Yunusbaeva
  • L. M. Khalilov
  • A. R. TuktarovEmail author
Full Article


Quadricyclane derivatives are shown for the first time to be promising for application as anticancer drugs. The efficiency of such cage compounds is mainly due to thermal action on cancer cells resulting from a C—C bond cleavage in quadricyclane on exposure to catalytic amounts of cisplatin Pt ions.

Key words

norbornadiene quadricyclane anticancer activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Hammond, N. J. Turro, A. Fischer, J. Am. Chem. Soc., 1961, 83, 4674.CrossRefGoogle Scholar
  2. 2.
    G. C. Hammond, P. Wyatt, C. D. De Boer, N. J. Turro, J. Am. Chem. Soc., 1964, 86, 2532.CrossRefGoogle Scholar
  3. 3.
    A. D. Dubonosov, V. A. Bren, V. A. Chernoivanov, Russ. Chem. Rev., 2002, 71, 917.CrossRefGoogle Scholar
  4. 4.
    M. E. Wright, G. D. Allred, R. B. Wardle, L. F. Cannizzo, J. Org. Chem., 1993, 58, 4122.CrossRefGoogle Scholar
  5. 5.
    E. E. Bonfantini, D. L. Officer, J. Chem. Soc., Chem. Commun., 1994, 1445.Google Scholar
  6. 6.
    P. Laine, V. Marvaud, A. Gourdon, J.-P. Launay, R. Argazzi, C.-A. Bignozzi, Inorg. Chem., 1996, 35, 711.CrossRefGoogle Scholar
  7. 7.
    S. Fraysse, C. Coudret, J.-P. Launay, Eur. J. Inorg. Chem., 2000, 1581.Google Scholar
  8. 8.
    S. Morino, T. Watanabe, Y. Magaya, T. Yamashita, K. Horie, T. Nishikubo, J. Photopolym. Sci. Technol., 1994, 7, 121.CrossRefGoogle Scholar
  9. 9.
    S. Takahashi, K. Samata, H. Muta, S. Machida, K. Horie, Appl. Phys. Lett., 2001, 78, 13.CrossRefGoogle Scholar
  10. 10.
    R. Herges, W. Reif, Liebigs Ann. Chem., 1996, 761.Google Scholar
  11. 11.
    F. Starck, P. G. Jones, R. Herges, Eur. J. Org. Chem., 1998, 2533.Google Scholar
  12. 12.
    S. Nakatsuji, S. Takeuchi, T. Ojima, Y. Ogawa, H. Akutsu, J. I. Yamada, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2001, 356, 23.CrossRefGoogle Scholar
  13. 13.
    S. Takeuchi, Y. Ogawa, A. Naito, K. Sudo, N. Yasuoka, H. Akutsu, J. I. Yamada, S. Nakatsuji, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2000, 345, 167.CrossRefGoogle Scholar
  14. 14.
    S. Nakatsuji, Y. Ogawa, S. Takeuchi, H. Akutsu, J. I. Yamada, A. Naito, K. Sudo, N. Yasuoka, J. Chem. Soc., Perkin Trans. 2, 2000, 1969.Google Scholar
  15. 15.
    V. A. Bren, A. D. Dubonosov, V. I. Minkin, V. A. Chernoivanov, Russ. Chem. Rev., 1991, 60, 451.CrossRefGoogle Scholar
  16. 16.
    C. Philippopoulos, D. Economou, C. Economou, J. Marangozis, Ind. Eng. Chem. Prod. Res. Dev., 1983, 22, 627.CrossRefGoogle Scholar
  17. 17.
    H. Hogeveen, H. C. Volger, J. Am. Chem. Soc., 1967, 89, 2486.CrossRefGoogle Scholar
  18. 18.
    J. Manassen, J. Catal., 1970, 8, 38.CrossRefGoogle Scholar
  19. 19.
    S. J. Cristol, R. T. La Londe, J. Am. Chem. Soc., 1959, 81, 5417.CrossRefGoogle Scholar
  20. 20.
    H. Zheng, D. G. Hall, Tetrahedron Lett., 2010, 51, 3561.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • U. M. Dzhemilev
    • 1
  • A. R. Akhmetov
    • 1
  • A. A. Khuzin
    • 1
  • V. A. D’yakonov
    • 1
  • L. U. Dzhemileva
    • 1
  • M. M. Yunusbaeva
    • 1
  • L. M. Khalilov
    • 1
  • A. R. Tuktarov
    • 1
    Email author
  1. 1.Institute of Petroleum Chemistry and CatalysisRussian Academy of SciencesUfa, Republic of BashkortostanRussian Federation

Personalised recommendations