Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1020–1024 | Cite as

[2-(2-Nitrophenyl)oxiran-1-yl](aryl(methyl))ketones in the synthesis of 3-hydroxyquinolin-4(1H)-ones and 2-arylquinolines

  • V. A. MamedovEmail author
  • V. L. Mamedova
  • G. Z. Khikmatova
  • E. M. Mahrous
  • D. E. Korshin
  • V. V. Syakaev
  • R. R. Fayzullin
  • E. V. Mironova
  • Sh. K. Latypov
  • O. G. Sinyashin
Full Article
  • 28 Downloads

Abstract

The applicability of [2-(2-nitrophenyl)oxiran-1-yl](aryl(methyl))ketones in the synthesis of 3-hydroxyquinolin-4-ones and 2-arylquinolines was studied.

Key words

3-hydroxyquinolin-4(1H)-ones 4-bromo-3-hydroxyquinolines 3-hydroxyquinolines 2-arylquinolines [2-(2-nitrophenyl)oxiran-1-yl](aryl(methyl))ketones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Michael, Nat. Prod. Rep., 1997, 14, 605.CrossRefGoogle Scholar
  2. 2.
    M. J. Mphahlele, M. S. Nwamadi, P. Mabeda, J. Heterocycl. Chem., 2006, 43, 255.CrossRefGoogle Scholar
  3. 3.
    R. M. Cross, A. Monastyrskyi, T. S. Mutka, J. N. Burrows, D. E. Kyle, R. Manetsch, J. Med. Chem., 2010, 53, 7076.CrossRefGoogle Scholar
  4. 4.
    M. J. Mphahlele, J. Chem. Res. (S), 2002, 196.Google Scholar
  5. 5.
    M. Hadjeri, A.-M. Mariotte, A. Boumendjel, Chem. Pharm. Bull., 2001, 49, 1352.CrossRefGoogle Scholar
  6. 6.
    Y. Xia, Z.-Y. Yang, P. Xia, T. Hackl, Hamel, A. Mauger, J.-H. Wu, K.-H. Lee, J. Med. Chem., 2001, 44, 3932.CrossRefGoogle Scholar
  7. 7.
    J. T. Hodgkinson, W. R. J. D. Galloway, Sh. Saraf, I. R. Baxendale, S. V. Ley, M. Ladlow, M. Welch, D. R. Spring, Org. Biomol. Chem., 2011, 9, 57.CrossRefGoogle Scholar
  8. 8.
    F. Gao, K. F. Johnson, J. B. Schlenof, J. Chem. Soc., Perkin Trans. 2, 1996, 269.Google Scholar
  9. 9.
    D. A. Yushchenko, M. D. Bilokin, O. V. Pyvovarenko, G. Duportail, Y. Mely, V. G. Pivovarenko, Tetrahedron Lett., 2006, 47, 905.CrossRefGoogle Scholar
  10. 10.
    P. Hradil, J. Jirman, Coll. Czech. Chem. Commun., 1995, 60, 1357.CrossRefGoogle Scholar
  11. 11.
    P. Hradil, J. Hlavac, K. Lemr, J. Heterocycl. Chem., 1999, 36, 141.CrossRefGoogle Scholar
  12. 12.
    P. Hradil, L. Kvapil, J. Hlavac, T. Weidlich, A. Lycka, K. Lemr, J. Heterocycl. Chem., 2000, 37, 831.CrossRefGoogle Scholar
  13. 13.
    P. Hradil, M. Grepl, J. Hlavac, A. Lycka, Heterocycles, 2007, 71, 2, 269.CrossRefGoogle Scholar
  14. 14.
    M. M. Heravi, H. A. Oskooie, L. Bahrami, M. Ghassemzadeh, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2006, 45, 779.Google Scholar
  15. 15.
    V. A. Mamedov, V. L. Mamedova, V. V. Syakaev, D. E. Korshin, G. Z. Khikmatova, E. V. Mironova, O. B. Bazanova, I. Kh. Rizvanov, Sh. K. Latypov, Tetrahedron, 2017, 73, 5082.CrossRefGoogle Scholar
  16. 16.
    A. Hassner, I. Namboothiri, Organic Synthesis Based on Name Reactions, Elsevier, Amsterdam, 2012, p. 311.Google Scholar
  17. 17.
    V. L. Mamedova, G. Z. Khikmatova, Chem. Heterocycl. Compd., 2017, 53, 976.CrossRefGoogle Scholar
  18. 18.
    H. V. Mierde, P. Voort, D. Vos, F. Verport, Eur. J. Chem., 2008, 1625.Google Scholar
  19. 19.
    S. Parua, R. Sikari, S. Sinha, S. Das, G. Chakraborty, N. D. Paul, Org. Biomol. Chem., 2018, 16, 274.CrossRefGoogle Scholar
  20. 20.
    N. Anand, T. Chanda, S. Koley, S. Chowdhury, M. S. Singh, RSC Adv., 2015, 5, 7654.CrossRefGoogle Scholar
  21. 21.
    G. Zhang, J. Wu, H. Zeng, S. Zhang, Z. Yin, S. Zheng, Org. Lett., 2017, 19, 1080.CrossRefGoogle Scholar
  22. 22.
    R. Martinez, D. J. Ramon, M. Yus, J. Org. Chem., 2008, 73, 9778.CrossRefGoogle Scholar
  23. 23.
    A.-H. Li, E. Ahmed, X. Chen, M. Cox, A. P. Crew, H.-Q. Dong, M. Jin, L. Ma, B. Panicker, K. W. Siu, A. G. Steining, K. M. Stolz, P. A. R. Tavares, B. Volk, Q. Weng, D. Werner, M. J. Mulvihill, Org. Biomol. Chem., 2007, 5, 61.CrossRefGoogle Scholar
  24. 24.
    R. Martinez, D. J. Ramon, M. Yus, Tetrahedron, 2006, 62, 8988.CrossRefGoogle Scholar
  25. 25.
    T. Nakajima, T. Inada, T. Igarashi, T. Sekioka, I. Shimizu, Bull. Chem. Soc. Jpn., 2006, 79, 1941.CrossRefGoogle Scholar
  26. 26.
    A. Berman, J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc., 2008, 130, 14926.CrossRefGoogle Scholar
  27. 27.
    H. Li, C. Wang, H. Huang, X. Xu, Y. Li, Tetrahedron Lett., 2011, 52, 1108.CrossRefGoogle Scholar
  28. 28.
    N. Sudhapriya, A. Nandakumar, P. T. Perumat, RSC Adv., 2014, 4, 58476.CrossRefGoogle Scholar
  29. 29.
    X. Xu, X. Zhang, W. Liu, Q. Zhao, Z. Wang, L. Yu, F. Shi, Tetrahedron Lett., 2015, 56, 3790.CrossRefGoogle Scholar
  30. 30.
    R. Khusnutdinov, A. Bayguzina, R. Aminov, U. Dzhemilev, J. Heterocycl. Chem., 2016, 53, 144.CrossRefGoogle Scholar
  31. 31.
    P. Kamath, R. C. Viner, S. C. Smith, M. Lal, Synlett, 2017, 28,1341.CrossRefGoogle Scholar
  32. 32.
    S. Das, D. Maiti, S. Sarkar, J. Org. Chem., 2018, 83, 2309.CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.CrossRefGoogle Scholar
  34. 34.
    G. M. Sheldrick, Acta Crystallogr., Sect.C: Struct. Chem., 2015, 71, 3.CrossRefGoogle Scholar
  35. 35.
    L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • V. A. Mamedov
    • 1
    • 2
    Email author
  • V. L. Mamedova
    • 1
  • G. Z. Khikmatova
    • 1
    • 2
  • E. M. Mahrous
    • 2
  • D. E. Korshin
    • 1
  • V. V. Syakaev
    • 1
  • R. R. Fayzullin
    • 1
  • E. V. Mironova
    • 1
  • Sh. K. Latypov
    • 1
  • O. G. Sinyashin
    • 1
    • 2
  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”KazanRussian Federation
  2. 2.Kazan National Research Technological UniversityKazanRussian Federation

Personalised recommendations