Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 5, pp 1006–1013 | Cite as

Synthesis of dispirooxindoles containing N-unsubstituted heterocyclic moieties and study of their anticancer activity

  • A. A. Beloglazkina
  • N. A. Karpov
  • S. R. Mefedova
  • V. S. Polyakov
  • D. A. Skvortsov
  • M. A. Kalinina
  • V. A. Tafeenko
  • A. G. Majouga
  • N. V. Zyk
  • E. K. Beloglazkina
Full Article
  • 7 Downloads

Abstract

A convenient method is proposed for the synthesis of N-unsubstituted spiroxindoles with different heterocyclic moieties (2-thiohydantoin, hydantoin, and thiazolidine) by the regio-selective 1,3-dipolar cycloaddition of azomethine ylides, generated from isatins and sarcosine, to arylidene derivatives of corresponding heterocycles. The cytotoxicity of compounds was tested by the MTT method against MCF7, A549, HEK, and VA13 cell lines and compared with the anticancer drug Nutlin-3a. The best bioactivity was observed for hydantoin-based dispiroindolinones, the most cytotoxic compound demonstrated selectivity against A549 lung cancer cells with an IC50 value of 6.6±1.6 μmol L−1.

Key words

hydantoins thiohydantoins thiazolidines dispiroindolinones 1,3-dipolar cyclo addition cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Teodoro, S. K. Evans, M. R. Green, Nat. Rev. Mol. Cell Biol., 2007, 8, 729.CrossRefGoogle Scholar
  2. 2.
    A. Levine, Cell, 1997, 88, 323.CrossRefGoogle Scholar
  3. 3.
    B. Vogelstein, D. P. Lane, A. Levine, Nature, 2000, 408, 307.CrossRefGoogle Scholar
  4. 4.
    T. Riley, E. Sontag, P. Chen, A. Levine, Nat. Rev. Mol. Cell. Biol., 2008, 9, 402.CrossRefGoogle Scholar
  5. 5.
    P. M. Chumakov, Biochemistry (Moscow), 2007, 72, No. 13, 1399.CrossRefGoogle Scholar
  6. 6.
    D. P. Lane, Nature, 1992, 358, 15.CrossRefGoogle Scholar
  7. 7.
    Zh. Z. Wang, Yi. Sun, Transl. Oncol., 2010, 3, 1.CrossRefGoogle Scholar
  8. 8.
    L. Shu, Z. Li, C. Gu, D. Fishlock, Org. Process Res. Dev., 2013, 17, 247.CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, L. Liu, W. Sun, J. Lu, D. McEachern, X. Li, S. Yu, D. Bernard, P. Ochsenbein, V. Ferey, J. C. Carry, J. R. Deschamps, D. Sun, S. Wang, J. Am. Chem. Soc., 2013, 135, 7223.CrossRefGoogle Scholar
  10. 10.
    Y. Sugimoto, US Pat. Appl. 20130165424A9, 2012.Google Scholar
  11. 11.
    Y. Bin, Y. De-Quan, L. Hong-Min, Eur. J. Med. Chem., 2015, 97, 673.CrossRefGoogle Scholar
  12. 12.
    E. Drakos, R. R. Singh, G. Z. Rassidakis, E. Schlette, J. Li, F. X. Claret, R. J. Ford, Jr., F. Vega, L. J. Medeiros, Leukemia, 2011, 25, 856.CrossRefGoogle Scholar
  13. 13.
    I. S. Antipin, M. A. Kazymova, M. A. Kuznetsov, A. V. Vasilyev, M. A. Ishchenko, A. A. Kiryushkin, L. M. Kuz-netsova, S. V. Makarenko, V. A. Ostrovskii, M. L. Petrov, O. V. Solod, Yu. G. Trishin, I. P. Yakovlev, V. G. Nenaidenko, E. K. Beloglazkina, I. P. Beletskaya, Yu. A. Ustynyuk, P. A. Solov’ev, I. V. Ivanov, E. V. Malina, N. V. Sivova, V. V. Negrebetskii, Yu. I. Baukov, N. A. Pozharskaya, V. F. Traven’, A. E. Shchekotikhin, A. V. Varlamov, T. N. Borisova, Yu. A. Lesina, E. A. Krasnokutskaya, S. I. Rogozhnikov, S. N. Shurov, T. P. Kustova, M. V. Klyuev, O. G. Khelevina, P. A. Stuzhin, A. Yu. Fedorov, A. V. Gushchin, V. A. Dodonov, A. V. Kolobov, V. V. Plakhtinskii, V. Yu. Orlov, A. P. Kriven’ko, O. V. Fedotova, N. V. Pchelintseva, V. N. Charushin, O. N. Chupakhin, Yu. N. Klimochkin, A. Yu. Klimochkina, V. N. Kuryatnikov, Yu. A. Malinovskaya, A. S. Levina, O. E. Zhuravlev, L. I. Voronchikhina, A. S. Fisyuk, A. V. Aksenov, N. A. Aksenov, I. V. Aksenova, Russ. J. Org. Chem., 2017, 53, 1257.CrossRefGoogle Scholar
  14. 14.
    Y. A. Ivanenkov, S. V. Vasilevski, E. K. Beloglazkina, M. E. Kukushkin, A. E. Machulkin, M. S. Veselov, N. V. Chufarova, A. Vanzcool, N. V. Zyk, D. A. Skvortsov, A. A. Khutornenko, A. L. Rusanov, A. G. Tonevitsky, O. A. Dontsova, A. G. Majouga, Bioorg. Med. Chem. Lett., 2015, 25, 404.CrossRefGoogle Scholar
  15. 15.
    E. S. Barskaia, A. A. Beloglazkina, B. Wobith, N. A. Zefirov, A. G. Majouga, E. K. Beloglazkina, N. V. Zyk, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull., 2015, 64, 1560.CrossRefGoogle Scholar
  16. 16.
    A. A. Beloglazkina, B. Wobith, E. S. Barskaia, N. A. Zefirov, A. G. Majouga, E. K. Beloglazkina, N. V. Zyk, S. A. Kuznetsov, O. N. Zefirova, Med. Chem. Res., 2016, 25, 1239.CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, Q. Ding, J.-J. Liu, J. Zhang, N. Jiang, X.-J. Chu, D. Bartkovitz, K.-C. Luk, C. Janson, C. Tovar, Z. M. Fili-povic, B. Higgins, K. Glenn, K. Packman, L. T. Vassilev, B. Graves, Bioorg. Med. Chem., 2014, 22, 4001.CrossRefGoogle Scholar
  18. 18.
    Y. Nakamura, Cancer Sci., 2004, 95, 7.CrossRefGoogle Scholar
  19. 19.
    L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podalski, Z. Fillipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, Science, 2010, 42, 1618.Google Scholar
  20. 20.
    T. Berranger, Y. Langlois, Tetrahedron Lett., 1995, 36, 5523.Google Scholar
  21. 21.
    I. Subtel’na, D. Atamanyuk, Z. E. Szymanska, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, Bioorg. Med. Chem., 2010, 18, 5090.CrossRefGoogle Scholar
  22. 22.
    A. A. Beloglazkina, B. Wobith, E. S. Barskaia, N. A. Zefirov, A. G. Majouga, E. K. Beloglazkina, N. V. Zyk, S. A. Kuznetsov, O. N. Zefirova, Med. Chem. Res., 2016, 25, 1239.CrossRefGoogle Scholar
  23. 23.
    O. Y. Kuznetsova, R. L. Antipin, A. V. Udina, O. O. Krasnovskaya, E. K. Beloglazkina, V. I. Terenin, V. E. Koteliansky, N. V. Zyk, A. G. Majouga, J. Heterocycl. Chem., 2016, 53, 1570.CrossRefGoogle Scholar
  24. 24.
    J. T. Thenmozhiyal, P. T. Wong, W. K. Chui, J. Med. Chem., 2004, 47, 1527.CrossRefGoogle Scholar
  25. 25.
    S. Erster, M. Mihara, R. H. Kim, O. Petrenko, Mol. Cell. Biol., 2004, 24, 6728.CrossRefGoogle Scholar
  26. 26.
    M. Ferrari, M. C. Fornasiero, A. M. Isetta, J. Immunol. Methods, 1990, 131, 165.CrossRefGoogle Scholar
  27. 27.
    L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Fil ipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, Science, 2004, 303, 844.CrossRefGoogle Scholar
  28. 28.
    C. Gros, J. Fahy, L. Halby, I. Dufau, A. Erdmann, J. M. Gregorie, F. Ausseil, S. Vispé, P. B. Arimondo, Biochimie, 2012, 94, 2280.CrossRefGoogle Scholar
  29. 29.
    J. E. Kravchenko, G. V. Ilyinskaya, P. G. Komarov, L. S. Aga pova, D. V. Kochetkov, E. Strom, E. I. Frolova, L. Kovriga, A. V. Gudkov, E. Feinstein, P. M. Chumakov, Proc. Natl. Acad. Sci. USA, 2008, 105, 6302.CrossRefGoogle Scholar
  30. 30.
    D. C. Eustice, P. A. Feldman, A. M. Colberg-Poley, R. M. Buckery, R. H. Neubauer, Biotechniques, 1991, 11, 739.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. A. Beloglazkina
    • 1
  • N. A. Karpov
    • 1
  • S. R. Mefedova
    • 1
  • V. S. Polyakov
    • 1
  • D. A. Skvortsov
    • 1
  • M. A. Kalinina
    • 1
    • 2
  • V. A. Tafeenko
    • 1
  • A. G. Majouga
    • 1
    • 3
  • N. V. Zyk
    • 1
  • E. K. Beloglazkina
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Skolkovo Institute of Science and TechnologyTerritory of the Skolkovo Innovation CenterMoscowRussian Federation
  3. 3.D. Mendeleev University of Chemical Technology of RussiaMoscowRussian Federation

Personalised recommendations