Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 5, pp 955–966 | Cite as

Naphthoquinone-derived polyol macrolides from natural sources

  • V. A. Alferova
  • M. V. Shuvalov
  • V. A. Korshun
  • A. P. TyurinEmail author
Review
  • 8 Downloads

Abstract

New biologically active substances isolated from natural sources provide valuable information on structural motifs that are important for a specific type of activity and can also be used as drugs or serve as raw materials for chemical modification in order to develop new pharmaceuticals. This review considers natural antibiotics combining two pharmacophores in their structure: a redox-active naphthoquinone moiety and a membrane-active polyol macrolide. Data on their structures and the spectrum of biological activity are summarized.

Key words

antibiotics 1,4-naphtoquinone polyol compounds macrolides biological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Newman, G. M. Cragg, J. Nat. Prod., 2016, 79, 629.CrossRefGoogle Scholar
  2. 2.
    R. M. Wilson, S. J. Danishefsky, J. Org. Chem., 2006, 71, 8329.CrossRefGoogle Scholar
  3. 3.
    L. F. Tietze, H. P. Bell, S. Chandrasekhar, Angew. Chem., Int. Ed. Engl., 2003, 42, 3996.CrossRefGoogle Scholar
  4. 4.
    T. Rodrigues, D. Reker, P. Schneider, G. Schneider, Nat. Chem., 2016, 8, 531.CrossRefGoogle Scholar
  5. 5.
    L. Laraia, K. Ohsawa, G. Konstantinidis, L. Robke, Y.-W. Wu, K. Kumar, H. Waldmann, Angew. Chem., Int. Ed. Engl., 2017, 56, 2145.CrossRefGoogle Scholar
  6. 6.
    J. Eder, R. Sedrani, C. Wiesmann, Nat. Rev. Drug Discov., 2014, 13, 577.CrossRefGoogle Scholar
  7. 7.
    L. Laraia, L. Robke, H. Waldmann, Chem, 2018, 4, 705.CrossRefGoogle Scholar
  8. 8.
    M. K. Bhattacharjee, Chemistry of Antibiotics and Related Drugs, Springer, Cham, 2016, 219 p.CrossRefGoogle Scholar
  9. 9.
    Antibiotic Drug Discovery: New Targets and Molecular Entities, Eds S. M. Firestine, T. Lister, Royal Society of Chemistry, Cambridge, 2017, 271 p.Google Scholar
  10. 10.
    C. Walsh, T. A. Wencewicz, Antibiotics: Challenges, Mechanisms, Opportunities, ASM Press, Washington, DC, 2016, 477 p.Google Scholar
  11. 11.
    M. A. T. Blaskovich, K. A. Hansford, M. S. Butler, Z. Jia, A. E. Mark, M. A. Cooper, ACS Infect. Dis., 2018, 4, 715.CrossRefGoogle Scholar
  12. 12.
    R. H. Thomson, Naturally Occurring Quinones, 2nd ed., Elsevier, London-New York, 1971, p. 198.CrossRefGoogle Scholar
  13. 13.
    R. H. Thomson, Naturally Occurring Quinones IV, Springer Netherlands, Dordrecht, 1996, p. 112.CrossRefGoogle Scholar
  14. 14.
    Y. Kumagai, Y. Shinkai, T. Miura, A. K. Cho, Annu. Rev. Pharmacol. Toxicol., 2012, 52, 221.CrossRefGoogle Scholar
  15. 15.
    W. Oppolzer, V. Prelog, Helv. Chim. Acta, 1973, 56, 2287.CrossRefGoogle Scholar
  16. 16.
    N.-J. Wang, Y. Fu, G.-H. Yan, G.-H. Bao, C.-F. Xu, C.-H. He, J. Antibiot. (Tokyo), 1988, 41, 264.CrossRefGoogle Scholar
  17. 17.
    H. Mosaei, V. Molodtsov, B. Kepplinger, J. Harbottle, C. W. Moon, R. E. Jeeves, L. Ceccaroni, Y. Shin, S. Morton-Laing, E. C. L. Marrs, C. Wills, W. Clegg, Y. Yuzenkova, J. D. Perry, J. Bacon, J. Errington, N. E. E. Allenby, M. J. Hall, K. S. Murakami, N. Zenkin, Mol. Cell, 2018, 72, 263.CrossRefGoogle Scholar
  18. 18.
    P. Cai, F. Kong, M. E. Ruppen, G. Glasier, G. T. Carter, J. Nat. Prod., 2005, 68, 1736.CrossRefGoogle Scholar
  19. 19.
    M. E. Rateb, W. E. Houssen, M. Arnold, M. H. Abdelrahman, H. Deng, W. T. A. Harrison, C. K. Okoro, J. A. Asenjo, B. A. Andrews, G. Ferguson, A. T. Bull, M. Goodfellow, R. Ebel, M. Jaspars, J. Nat. Prod., 2011, 74, 1491.CrossRefGoogle Scholar
  20. 20.
    L.-O. Klotz, X. Hou, C. Jacob, Molecules, 2014, 19, 14902.CrossRefGoogle Scholar
  21. 21.
    D. O. Futuro, P. G. Ferreira, C. D. Nicoletti, L. P. Borba-Santos, F. C. D. Silva, S. Rozental, V. F. Ferreira, An. Acad. Bras. Ciênc., 2018, 90, 1187.CrossRefGoogle Scholar
  22. 22.
    K. W. Wellington, RSC Adv., 2015, 5, 20309.CrossRefGoogle Scholar
  23. 23.
    M. Elhabiri, P. Sidorov, E. Cesar-Rodo, G. Marcou, D. A. Lanfranchi, E. Davioud-Charvet, D. Horvath, A. Varnek, Chem.-Eur. J., 2015, 21, 3415.CrossRefGoogle Scholar
  24. 24.
    E. C. Rodo, L. Feng, M. Jida, K. Ehrhardt, M. Bielitza, J. Boilevin, M. Lanzer, D. L. Williams, D. A. Lanfranchi, E. Davioud-Charvet, Eur. J. Org. Chem., 2016, 1982.Google Scholar
  25. 25.
    S. Ōmura, Macrolide Antibiotics: Chemistry, Biology, and Practice, Academic Press, Orlando, 1984, p. 509.Google Scholar
  26. 26.
    S. Ōmura, K. Shiomi, in Macrolide Antibiotics: Chemistry, Biology, and Practice, Ed. S. Ōmura, Academic Press, Amsterdam and Boston, 2002, p. 1.Google Scholar
  27. 27.
    O. A. Omel'chuk, A. N. Tevyashova, A. E. Shchekotikhin, Russ. Chem. Rev., 2018, 87, 1206.CrossRefGoogle Scholar
  28. 28.
    N. O. Blinov, V. V. Onoprienko, T. M. Rodina, S. I. Againa, E. I. Khlebarova, Antibiotiki [Antibiotics], 1974, 19, 579 (in Russian).Google Scholar
  29. 29.
    N. O. Blinov, N. M. Golovkina, Yu. M. Khokhlova, E. I. Khlebarova, E. M. Kleiner, I. Kh. Georgieva, G. N. Sheikova, A. I. Korenyako, Antibiotiki [Antibiotics], 1967, 12, 867 (in Russian).Google Scholar
  30. 30.
    I. Georgieva, G. Sheikova, E. Khlebarova, V. Balouzov, P. Issov, S. Againa, Pat. GB1254721 (A), 1971.Google Scholar
  31. 31.
    H. Murata, K. Suzuki, T. Tabayashi, C. Hattori, Y. Takada, K.-I. Harada, M. Suzuki, T. Ikemoto, T. Smbuya, T. Haneishi, A. Torikata, Y. Ixezono, N. Nakayama, J. Antibiot. (Tokyo), 1995, 48, 838.CrossRefGoogle Scholar
  32. 32.
    T. Kato, T. Sato, Y. Kashiwagi, S. Hosokawa, Org. Lett., 2015, 17, 2274.CrossRefGoogle Scholar
  33. 33.
    H. Shigemori, Y. Tanaka, K. Yazawa, Y. Mikami, J. Kobayashi, Tetrahedron, 1996, 52, 9031.CrossRefGoogle Scholar
  34. 34.
    K. Komatsu, M. Tsuda, Y. Tanaka, Y. Mikami, J. Kobayashi, J. Org. Chem., 2004, 69, 1535.CrossRefGoogle Scholar
  35. 35.
    T. Sasaki, K. Furihata, A. Shimazu, H. Seto, M. Iwata, T. Watanabe, N. Otake, J. Antibiot. (Tokyo), 1986, 39, 502.CrossRefGoogle Scholar
  36. 36.
    T. Sasaki, K. Furihata, H. Nakayama, H. Seto, N. Otake, Tetrahedron Lett., 1986, 27, 1603.CrossRefGoogle Scholar
  37. 37.
    Z. Wan, W. Fang, L. Shi, K. Wang, Y. Zhang, Z. Zhang, Z. Wu, Z. Yang, Y. Gu, J. Antibiot. (Tokyo), 2014, 68, 185.CrossRefGoogle Scholar
  38. 38.
    F. Kong, D. Q. Liu, J. Nietsche, M. Tischler, G. T. Carter, Tetrahedron Lett., 1999, 40, 9219.CrossRefGoogle Scholar
  39. 39.
    T. Kawahara, J.-H. Hwang, M. Izumikawa, J. Hashimoto, M. Takagi, K. Shin-ya, J. Nat. Prod., 2012, 75, 1814.CrossRefGoogle Scholar
  40. 40.
    T. Kawahara, S. Ohira, M. Izumikawa, H. Tanaka, K. Shinya, J. Antibiot. (Tokyo), 2014, 67, 419.CrossRefGoogle Scholar
  41. 41.
    T. Kihara, H. Koshino, Y.-C. Shin, I. Yamaguchi, K. Isono, J. Antibiot. (Tokyo), 1995, 48, 1385.CrossRefGoogle Scholar
  42. 42.
    R. Sawa, Y. Kubota, M. Umekita, M. Hatano, C. Hayashi, M. Igarashi, J. Antibiot. (Tokyo), 2017, 71, 91.CrossRefGoogle Scholar
  43. 43.
    T. Fukai, J. Kuroda, T. Nomura, J. Uno, M. Akao, J. Antibiot. (Tokyo), 1999, 52, 340.CrossRefGoogle Scholar
  44. 44.
    H. Hong, T. Fill, P. F. Leadlay, Angew. Chem., Int. Ed. Engl., 2013, 52, 13096.CrossRefGoogle Scholar
  45. 45.
    G. Yuan, K. Hong, H. Lin, Z. She, J. Li, Mar. Drugs, 2013, 11, 817.CrossRefGoogle Scholar
  46. 46.
    H. Hong, Y. Sun, Y. Zhou, E. Stephens, M. Samborskyy, P. F. Leadlay, Beilstein J. Org. Chem., 2016, 12, 2164.CrossRefGoogle Scholar
  47. 47.
    H. Hong, M. Samborskyy, F. Lindner, P. F. Leadlay, Angew. Chem., Int. Ed. Engl., 2016, 55, 1118.CrossRefGoogle Scholar
  48. 48.
    Y. Hu, M. Wang, C. Wu, Y. Tan, J. Li, X. Hao, Y. Duan, Y. Guan, X. Shang, Y. Wang, C. Xiao, M. Gan, J. Nat. Prod., 2018, 81, 178.CrossRefGoogle Scholar
  49. 49.
    H. Koshino, K. Kobinata, J. Uzawa, M. Uramoto, K. Isono, H. Osada, Tetrahedron, 1993, 49, 8827.CrossRefGoogle Scholar
  50. 50.
    W. Xu, G. Zhai, Y. Liu, Y. Li, Y. Shi, K. Hong, H. Hong, P. F. Leadlay, Z. Deng, Y. Sun, Angew. Chem., Int. Ed. Engl., 2017, 56, 5503.CrossRefGoogle Scholar
  51. 51.
    L. Xu, X. Xu, G. Yuan, Y. Wang, Y. Qu, E. Liu, BioMed Res. Int., 2018, 2018, 6942452.Google Scholar
  52. 52.
    Y. Usuki, K. Matsumoto, T. Inoue, K. Yoshioka, H. Iio, T. Tanaka, Bioorg. Med. Chem. Lett., 2006, 16, 1553.CrossRefGoogle Scholar
  53. 53.
    F. Arcamone, W. Barbieri, G. Franceschi, S. Penco, A. Vigevani, J. Am. Chem. Soc., 1973, 95, 2008.CrossRefGoogle Scholar
  54. 54.
    F. Arcamone, G. Franceschi, B. Gioia, S. Penco, A. Vigevani, J. Am. Chem. Soc., 1973, 95, 2009.CrossRefGoogle Scholar
  55. 55.
    C. D. Bruna, M. L. Ricciardi, A. Sanfilippo, Antimicrob. Agents Chemother., 1973, 3, 708.CrossRefGoogle Scholar
  56. 56.
    M. Bianchi, E. Cotta, G. Ferni, A. Grein, P. Julita, R. Mazzoleni, C. Spalla, Arch. Microbiol., 1974, 98, 289.CrossRefGoogle Scholar
  57. 57.
    S. Sora, O. Ciferri, G. Di Pasquale, G. E. Magni, Curr. Genet., 1980, 2, 61.CrossRefGoogle Scholar
  58. 58.
    I. Takahashi, Y. Nishiie, Y. Uosaki, K. Ochiai, Pat. JPH09100290 (A), 1997.Google Scholar
  59. 59.
    N. Serizawa, S. Suga, M. Nakajima, T. Nishizaki, M. Kizuka, Pat. WO0032604 (A1), 2000.Google Scholar
  60. 60.
    S. E. Helaly, A. Kulik, H. Zinecker, K. Ramachandaran, G. Y. A. Tan, J. F. Imhoff, R. D. Sussmuth, H.-P. Fiedler, V. Sabaratnam, J. Nat. Prod., 2012, 75, 1018.CrossRefGoogle Scholar
  61. 61.
    M. Perez, C. Schleissner, R. Fernandez, P. Rodriguez, F. Reyes, P. Zuniga, F. de la Calle, C. Cuevas, J. Antibiot. (Tokyo), 2015, 69, 388.CrossRefGoogle Scholar
  62. 62.
    R. G. Salcedo, C. Olano, C. Gomez, R. Fernandez, A. F. Brana, C. Mendez, F. de la Calle, J. A. Salas, Microb. Cell Factories, 2016, 15, 44.CrossRefGoogle Scholar
  63. 63.
    R. G. Salcedo, C. Olano, R. Fernandez, A. F. Brana, C. Mendez, F. de la Calle, J. A. Salas, Microb. Cell Factories, 2016, 15, 187.CrossRefGoogle Scholar
  64. 64.
    T. Takeuchi, M. Hatano, M. Umekita, C. Hayashi, S. Wada, M. Nagayoshi, R. Sawa, Y. Kubota, M. Kawada, M. Igarashi, M. Shibasaki, Org. Lett., 2017, 19, 4207.CrossRefGoogle Scholar
  65. 65.
    V. A. Alferova, R. A. Novikov, O. P. Bychkova, E. A. Rogozhin, M. V. Shuvalov, I. A. Prokhorenko, V. S. Sadykova, A. B. Kulko, L. G. Dezhenkova, E. A. Stepashkina, M. A. Efremov, O. N. Sineva, G. K. Kudrayakova, A. S. Peregudov, P. N. Solyev, Y. V. Tkachev, G. B. Fedorova, L. P. Terekhova, A. P. Tyurin, A. S. Trenin, V. A. Korshun, Tetrahedron, 2018, 74, 7442.CrossRefGoogle Scholar
  66. 66.
    I. Perez-Victoria, D. Oves-Costales, R. Lacret, J. Martin, M. Sanchez-Hidalgo, C. Diaz, B. Cautain, F. Vicente, O. Genilloud, F. Reyes, Org. Biomol. Chem., 2019, 17, 2954.CrossRefGoogle Scholar
  67. 67.
    V. Friese, A. Boos, H.-J. Bauch, E. Leistner, Int. J. Plant Biochem., 1993, 32, 613.Google Scholar
  68. 68.
    V. Friese, A. Boos, H.-J. Bauch, E. Leistner, Planta Med., 1989, 55, 671.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • V. A. Alferova
    • 1
  • M. V. Shuvalov
    • 1
    • 2
  • V. A. Korshun
    • 1
    • 3
  • A. P. Tyurin
    • 1
    • 3
    Email author
  1. 1.Gause Institute of New AntibioticsMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations