Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 186–190 | Cite as

Dichlorosilylene–hydrogen chloride complex: direct IR spectroscopic detection in argon matrix

  • S. E. BoganovEmail author
  • V. M. Promyslov
  • M. P. Egorov
Brief Communications
  • 5 Downloads

Abstract

A 1: 1 donor–acceptor complex between SiCl2 and HCl was detected by matrix IR spectroscopy. The existence of the complex was previously predicted theoretically in the course of analysis of mechanisms of chemical vapor deposition (CVD) processes involving chlorosilanes. The quantum chemical calculations at the G4(MP2) level confirmed the possibility of formation of only one stable complex upon the reaction of SiCl2 with HCl. In addition to the complex of the simplest composition, complexes of SiCl2 with HCl associates were observed upon matrix annealing. The only product formed upon the photolysis of the complexes of all types was trichlorosilane, a product of silylene insertion into the H–Cl bond.

Key words

dichlorosilylene hydrogen chloride donor–acceptor complex matrix isolation IR spectroscopy quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. del Coso, C. del Cañizo, A. Luque, J. Electrochem. Soc., 2008, 155, D485.Google Scholar
  2. 2.
    M. T. Swihart, R. W. Carr, J. Phys. Chem. A, 1998, 102, 1542.CrossRefGoogle Scholar
  3. 3.
    M. D. Su, H. B. Schlegel, J. Phys. Chem., 1993, 97, 9981.CrossRefGoogle Scholar
  4. 4.
    S. P. Walch, C. E. Dateo, J. Phys. Chem. A, 2001, 105, 2015.CrossRefGoogle Scholar
  5. 5.
    Y. Ge, M. S. Gordon, F. Battaglia, R. O. Fox, J. Phys. Chem. A, 2007, 111, 1462.CrossRefGoogle Scholar
  6. 6.
    Y. Ge, M. S. Gordon, F. Battaglia, R. O. Fox, J. Phys. Chem. A, 2007, 111, 1475.CrossRefGoogle Scholar
  7. 7.
    S. E. Boganov, V. M. Promyslov, S. S. Rynin, I. V. Krylova, G. S. Zaitseva, M. P. Egorov, Russ. Chem. Bull., 2018, 67, 425 (and references cited therein).CrossRefGoogle Scholar
  8. 8.
    L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 127, 124105.CrossRefGoogle Scholar
  9. 9.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc, Wallingford, CT, 2013.Google Scholar
  10. 10.
    A. V. Lalov, S. E. Boganov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2003, 52, 526.CrossRefGoogle Scholar
  11. 11.
    A. J. Barnes, H. E. Hallam, G. F. Scrimshaw, Trans. Faraday Soc., 1969, 65, 3150.CrossRefGoogle Scholar
  12. 12.
    B. D. Ruzsicska, A. Jodhan, I. Safarik, O. P. Strausz, T. N. Bell, Chem. Phys. Lett., 1985, 113, 67.CrossRefGoogle Scholar
  13. 13.
    M. E. Jacox, D. E. Milligan, J. Chem. Phys., 1968, 49, 3130.CrossRefGoogle Scholar
  14. 14.
    M.-L. H. Jeng, B. S. Ault, Inorg. Chem., 1990, 29, 837.CrossRefGoogle Scholar
  15. 15.
    R. Becerra, R. Walsh, Dalton Trans., 2010, 39, 9217.CrossRefGoogle Scholar
  16. 16.
    K. Raghavachari, J. Chandrasekhar, M. S. Gordon, K. J. Dykemas, J. Am. Chem. Soc., 1984, 106, 5853.CrossRefGoogle Scholar
  17. 17.
    S. E. Boganov, V. M. Promyslov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2011, 60, 2147.CrossRefGoogle Scholar
  18. 18.
    T. C. McInnis, L. Andrews, J. Phys. Chem., 1992, 96, 5276.CrossRefGoogle Scholar
  19. 19.
    J. Oláh, T. Veszprémi, F. De Proft, P. Geerlings, J. Phys. Chem. A, 2007, 111, 10815.CrossRefGoogle Scholar
  20. 20.
    A. K. Samanta, G. Czakó, Y. Wang, J. S. Mancini, J. M. Bowman, H. Reisler, Acc. Chem. Res., 2014, 47, 2700.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • S. E. Boganov
    • 1
    Email author
  • V. M. Promyslov
    • 1
  • M. P. Egorov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations