Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 149–157 | Cite as

Bis(nitroxide) methanofullerene as SOD-mimetic in reactions with catecholamines

  • N. B. MelnikovaEmail author
  • O. N. Solovyeva
  • V. M. Muzykina
  • V. P. GubskayaEmail author
  • G. M. Fazleeva
  • A. I. PoddelskyEmail author
Full Articles
  • 7 Downloads

Abstract

The reactions of a SOD-mimetic, bis(nitroxide) methanofullerene, with dopamine and 6-hydroxydopamine and the properties of its adsorption and Langmuir mono- and transferred layers were studied by methods of UV spectroscopy and EPR. The used fullerene derivative oxidizes catecholamines to cyclic and noncyclic quinones, whereas in a medium of phytic acid their oxidation products can be reduced. The inhibition effect of nitroxide fullerene in a phytic acid medium on the autocatalytic process of dopamine oxidation to its neurotoxic metabolite can be used for both the biomimetic prediction of stability of catecholamines and therapy of neurodegenerative diseases.

Key words

dopamine nitroxides fullerenes SOD-mimetics phytic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Thanan, S. Oikawa, Y. Hiraku, S. Ohnishi, N. Ma, S. Pinlaor, P. Yongvanit, S. Kawanishi, M. Murata, Int. J. Mol. Sci., 2015, 16, 193.CrossRefGoogle Scholar
  2. 2.
    A. Tramutola, C. Lanzillotta, M. Perluigi, D. A. Butterfield, Brain Res. Bull., 2017, 133, 88.CrossRefGoogle Scholar
  3. 3.
    E. B. Men´shchikova, V. Z. Lankin, N. K. Zenkov, I. A. Bondar´, N. F. Krugovykh, V. A. Trufakin, Okislitel´nyi stress. Prooksidanty i antioksidanty [Oxidative Stress. Prooxidants and Antioxidants], Slovo, Moscow, 2006, 203 pp. (in Russian).Google Scholar
  4. 4.
    E. Pliss, V. Sen´, I. Tikhonov, Nitroksil´nye radikaly v khimicheskikh i biokhimicheskikh protsessakh [Nitroxide Radicals in Chemical and Biochemical Processes], Lap Lambert Academic Publishing, Moscow, 2013, 55 pp. (in Russian).Google Scholar
  5. 5.
    C. S. Wilcox, Pharmacol. Therapeut., 2010, 126, 119.CrossRefGoogle Scholar
  6. 6.
    I. V. Tikhonov, E. M. Pliss, L. I. Borodin, V. D. Canopy, Russ. Chem. Bull., 2016, 65, 2985.CrossRefGoogle Scholar
  7. 7.
    D. Petrovic, M. Seke, B. Srdjenovic, A. Djordjevic, J. Nanomater., 2015, 2015, 11.CrossRefGoogle Scholar
  8. 8.
    L. B. Piotrovskii, O. I. Kiselev, Fullereny v biologii [Fullerenes in Biology], Rostok, St. Petersburg, 2006, 49 pp. (in Russian).Google Scholar
  9. 9.
    D. Jiang, S. Shi, L. Zhang, L. Liu, B. Ding, B. Zhao, G. Yagnik, F. Zhou, ACS Chem. Neurosci., 2013, 4, 1305.CrossRefGoogle Scholar
  10. 10.
    Q. Xu, A. G. Kanthasamy, M. B. Reddy, Toxicol., 2008, 245, 101.CrossRefGoogle Scholar
  11. 11.
    Q. Xu, A. G. Kanthasamy, M. B. Reddy, Parkinsons Dis., 2011, 2011, 6.Google Scholar
  12. 12.
    S. Muraoka, T. Miura, Life Sci., 2004, 74, 1691.CrossRefGoogle Scholar
  13. 13.
    V. P. Gubskaya, L. Sh. Berezhnaya, A. T. Gubaidullin, I. I. Faingold, R. A. Kotelnikova, N. P. Konovalova, V. I. Morozov, I. A. Litvinov, L. A. Nuretdinov, Org. Biomol. Chem., 2007, 5, 976.CrossRefGoogle Scholar
  14. 14.
    T. V. Sibgatullina, L. R. Khaertdinova, E. A. Gumerova, A. N. Akulov, Yu. A. Kostyukova, N. A. Nikonorova, N. I. Rumyantseva, Metody opredeleniya redoks-statusa kultiviruemykh kletok rastenii [Methods of Determination of the Redox Status of Cultivated Plant Cells], Kazan (Privolzhsky) Federal University, Kazan, 2011, 12 pp. (in Russian).Google Scholar
  15. 15.
    C. D. Stefano, O. Giuffre, D. Milea, S. Sammartano, Chem. Speciation Bioavailability, 2002, 15, 29.CrossRefGoogle Scholar
  16. 16.
    G. Dryhurst, K. M. Kadish, F. Scheller, R. Renneberg, Biological Electrochemistry, Academic Press, New York, 1982, p. 122.Google Scholar
  17. 17.
    V. I. Gidranovich, M. E. Akhtanina, V. M. Makarevskii, Z. V. Piletskaya, Vestn. VGU im. P. M. Masherova [Bulletin of P. M. Masherov Vitebsk State University], 2001, 4, 109 (in Russian).Google Scholar
  18. 18.
    T. V. Sirota, Voprosy Med. Khimii [Problems of Medical Chemistry], 1999, 45, 263 (in Russian).Google Scholar
  19. 19.
    W. Linert, G. N. L. Jameson, J. Inorg. Biochem., 2000, 79, 319.CrossRefGoogle Scholar
  20. 20.
    S. In, C. W. Hong, B. Choi, B. G. Jang, M. J. Kim, Mol. Neurobiol., 2016, 53, 777.CrossRefGoogle Scholar
  21. 21.
    V. M. Korobko, N. B. Melnikova, D. A. Panteleev, A. K. Martusevich, S. P. Peretyagin, Nitric Oxide, 2014, 42, 62.CrossRefGoogle Scholar
  22. 22.
    N. B. Melnikоva, V. M. Kоrоbkо, M. V. Gulenоva, G. M. Fazleeva, E. N. Kоchetkоv, A. I. Pоddelsky, I. A. Nuretdinоv, Cоllоids Surf. B Biоinterfaces, 2015, 136, 314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  1. 1.Privolzhsky Research Medical University of the Ministry of Health of the Russian FederationNizhny NovgorodRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of the Russian Academy of SciencesKazanRussian Federation
  3. 3.G. A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations