Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 137–148 | Cite as

Mono-C,O-chelated bromo- and triflatosilanes with an amino acid moiety: salts or covalently bonded complexes?

  • A. A. KorlyukovEmail author
  • D. E. Arkhipov
  • A. D. Volodin
  • Vad. V. Negrebetskii
  • A. A. NikolinEmail author
  • E. P. Kramarova
  • A. G. Shipov
  • Yu. I. Baukov
Full Articles
  • 4 Downloads

Abstract

Derivatives of the amino acids sarcosine and proline – triflates TsN(Me)CH2C(O)N(Me)-CH2SiMe2OTf and Ns–Pro–N(Me)CH2SiMe2OTf (Ns is 4-NO2C6H4SO2) – were synthesized by the reaction of trimethylsilyl triflate with halosilanes prepared previously. Bromide NsNHCH(Me)C(O)N(Me)CH2SiMe2Br was synthesized by the cleavage of the Si–O–Si moiety of the appropriate disiloxane with excess acetyl bromide. The X-ray diffraction study of these compounds and of the previously characterized bromide TsN(Ac)CH2C(O)N(Me) CH2SiMe2Br showed that the Si–O coordination bond lengths in the triflates are 1.7692(14)– 1.8623(14) Å. The interatomic distances between the bromine and silicon atoms are 2.7095(8) and 2.9704(7) Å, which indicates that these bonds are weak. To elucidate the nature of Si…X bonding (X = OTf, Br), the topological analysis of electron density was performed and 29Si NMR chemical shifts were calculated. The interatomic Si…X interaction in triflate TsN(Me)CH2C(O)- N(Me)CH2SiMe2OTf and bromide TsN(Ac)CH2C(O)N(Me)CH2SiMe2Br is weak. In triflate Ns–Pro–N(Me)CH2SiMe2OTf and bromide NsNHCH(Me)C(O)N(Me) CH2 SiMe2Br, the Si…X interaction is significantly stronger and corresponds to a weak coordination bond. Hence, the tosylates can be considered as salts, whereas the para-nitrobenzenesulfonyl derivatives are monochelated five-coordinate silicon complexes.

Key words

silicon-containing amino acids five-coordinate silicon compounds synthesis X-ray diffraction quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Macharashvili, V. E. Shklover, Yu. T. Struchkov, G. I. Oleneva, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, J. Chem. Soc., Chem. Commun., 1988, 683–685.Google Scholar
  2. 2.
    Y. E. Ovchinnikov, A. A. Macharashvili, Yu. T. Struchkov, A. G. Shipov, Y. I. Baukov, J. Struct. Chem., 1994, 35, 91–100.CrossRefGoogle Scholar
  3. 3.
    A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, J. Organomet. Chem., 2000, 606, 125–131.CrossRefGoogle Scholar
  4. 4.
    A. Bassindale, J. Organomet. Chem., 2001, 619, 132–140.CrossRefGoogle Scholar
  5. 5.
    A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, 1999, 2099–2109.Google Scholar
  6. 6.
    A. R. Bassindale, Y. I. Baukov, M. Borbaruah, S. J. Glynn, V. V. Negrebetsky, D. J. Parker, P. G. Taylor, R. Turtle, J. Organomet. Chem., 2003, 669, 154–163.CrossRefGoogle Scholar
  7. 7.
    A. V. Vologzhanina, A. A. Korlyukov, M. Y. Antipin, Acta Cryst., 2008, B64, 448–455.Google Scholar
  8. 8.
    E. F. Belogolova, V. F. Sidorkin, Russ. Chem. Bull., 2002, 51, 1472–1476.Google Scholar
  9. 9.
    E. F. Belogolova, E. P. Doronina, M. A. Belogolov, V. F. Sidorkin, J. Mol. Struct.: THEOCHEM, 2010, 950, 72–78.CrossRefGoogle Scholar
  10. 10.
    V. F. Sidorkin, E. F. Belogolova, V. A. Pestunovich, J. Mol. Struct.: THEOCHEM, 2001, 538, 59–65.CrossRefGoogle Scholar
  11. 11.
    A. A. Nikolin, E. P. Kramarova, A. A. Korlyukov, D. E. Arkhipov, A. G. Shipov, Yu. I. Baukov, A. A. Lagunin, T. A. Shmigol, Vad. V. Negrebetsky, Russ. Chem. Bull., 2017, 66, 571–573.CrossRefGoogle Scholar
  12. 12.
    A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, Russ. Chem. Bull., 2002, 51, 1423–1432.CrossRefGoogle Scholar
  13. 13.
    A. A. Macharashvili, V. E. Shklover, Y. T. Struchkov, Yu. I. Baukov, E. P. Kramarova, G. I. Oleneva, J. Organomet. Chem., 1987, 327, 167–172.CrossRefGoogle Scholar
  14. 14.
    S. Muhammad, A. R. Bassindale, P. G. Taylor, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics, 2011, 30, 564–571.CrossRefGoogle Scholar
  15. 15.
    M. Sohail, R. Panisch, A. Bowden, A. R. Bassindale, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, L. Male, S. Callear, S. J. Coles, M. B. Hursthouse, R. W. Harrington, W. Clegg, Dalton Trans., 2013, 42, 10971–10981.CrossRefGoogle Scholar
  16. 16.
    A. R. Bassindale, D. J. Parker, P. G. Taylor, N. Auner, B. Herrschaft, J. Organomet. Chem., 2003, 667, 66–72.CrossRefGoogle Scholar
  17. 17.
    A. A. Korlyukov, S. A. Pogozhikh, Yu. E. Ovchinnikov, K. A. Lyssenko, M. Yu. Antipin, A. G. Shipov, O. A. Zamyshlyaeva, E. P. Kramarova, V. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, J. Organomet. Chem., 2006, 691, 3962–3975.CrossRefGoogle Scholar
  18. 18.
    A. G. Shipov, E. P. Kramarova, H. Fang, D. E. Arkhipov, A. A. Nikolin, S. Y. Bylikin, V. V. Negrebetsky, A. A. Korlyukov, N. A. Voronina, A. R. Bassindale, P. G. Taylor, Yu. I. Baukov, J. Organomet. Chem., 2013, 741–742, 114–121.Google Scholar
  19. 19.
    N. F. Lazareva, A. Yu. Nikonov, Russ. Chem. Bull., 2017, 66, 1138–1162.CrossRefGoogle Scholar
  20. 20.
    F. H. Allen, Acta Cryst, 2002, B58, 380–388.Google Scholar
  21. 21.
    N. K. Hansen, P. Coppens, Acta Cryst., 1978, A34, 909–921.Google Scholar
  22. 22.
    A. A. Korlyukov, Russ. Chem. Rev., 2015, 84, 422–440.CrossRefGoogle Scholar
  23. 23.
    R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.Google Scholar
  24. 24.
    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1–S19.Google Scholar
  25. 25.
    E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457–461.CrossRefGoogle Scholar
  26. 26.
    M. G. Voronkov, V. P. Mileshkevich, Yu. A. Yuzhelevskii, Siloksanovaya svyaz´ [Siloxane Bonding], Nauka, Novosibirsk, 1976 (in Russian).Google Scholar
  27. 27.
    E. L. Kupche, E. Ya. Lukevits, Russ. Chem. Rev., 1989, 58, 1777.Google Scholar
  28. 28.
    V. V. Negrebetsky, V. V. Negrebetsky, A. G. Shipov, E. P. Kramorova, Y. I. Baukov, J. Organomet. Chem., 1995, 496, 103–107.CrossRefGoogle Scholar
  29. 29.
    V. V. Negrebetsky, S. N. Tandura, Yu. I. Baukov, Russ. Chem. Rev., 2009, 78, 21–51.CrossRefGoogle Scholar
  30. 30.
    L. Olsson, C.-H. Ottosson, D. Cremer, J. Am. Chem. Soc., 1995, 117, 7460–7479.CrossRefGoogle Scholar
  31. 31.
    E. P. Doronina, V. F. Sidorkin, N. F. Lazareva, J. Phys. Chem. A, 2015, 119, 3663–3673.CrossRefGoogle Scholar
  32. 32.
    E. F. Belogolova, V. F. Sidorkin, J. Phys. Chem. A, 2013, 117, 5365–5376.CrossRefGoogle Scholar
  33. 33.
    A. A. Nikolin, O. V. Kuznetsova, D. E. Arkhipov, E. P. Kramarova, A. G. Shipov, A. N. Egorochkin, A. A. Korlyukov, Yu. I. Baukov, Vad. V. Negrebetskii, Russ. Chem. Bull., 2013, 62, 1892–1899.CrossRefGoogle Scholar
  34. 34.
    A. A. Nikolin, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, V. V. Negrebetsky, A. A. Korlyukov, D. E. Arkhipov, A. Bowden, S. Y. Bylikin, A. R. Bassindale, P. G. Taylor, Organometallics, 2012, 31, 4988–4997.CrossRefGoogle Scholar
  35. 35.
    . A. Nikolin, V. V. Negrebetsky, Russ. Chem. Rev., 2014, 83, 848–883.CrossRefGoogle Scholar
  36. 36.
    The Chemistry of Organic Silicon Compounds, Eds S. Patai, Z. Rappoport, Y. Apeloig, Wiley, Chichester–New York, 1989.Google Scholar
  37. 37.
    A. G. Shipov, A. A. Korlyukov, E. P. Kramarova, D. E. Arkhipov, S. Yu. Bylikin, Kh. Fan, S. A. Pogozhikh, T. P. Murasheva, V. V. Negrebetsky, V. N. Khrustalev, Yu. E. Ovchinnikov, A. R. Bassindale, P. G. Taylor, Yu. I. Baukov, Russ. J. Org. Chem., 2011, 81, 2428–2439.Google Scholar
  38. 38.
    A. K. Wolf, J. Glinnemann, L. Fink, E. Alig, M. Bolte, M. U. Schmidt, Acta Cryst., 2010, B66, 229–236.Google Scholar
  39. 39.
    A. G. Shipov, E. P. Kramarova, T. P. Murasheva, A. A. Korlyukov, S. A. Pogozhikh, S. A. Tarasenko, V. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, Russ. J. Org. Chem., 2011, 81, 2428–2439.Google Scholar
  40. 40.
    E. Klieger, E. Schroder, Arch. Pharm. (Weinheim), 1973, 306, 834.CrossRefGoogle Scholar
  41. 41.
    A. A. Nikolin, D. E. Arkhipov, A. G. Shipov, E. P. Kramarova, N. A. Koval´chuk, A. A. Korlyukov, V. V. Negrebetsky, Yu. I. Baukov, A. R. Bassindale, P. G. Taylor, A. Bowden, S. Yu. Bylikin, Chem. Heterocycl. Compd., 2011, 47, 1565–1583.CrossRefGoogle Scholar
  42. 42.
    G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.Google Scholar
  43. 43.
    G. M. Sheldrick, Acta Cryst, 2015, C71, 3–8.Google Scholar
  44. 44.
    G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558.CrossRefGoogle Scholar
  45. 45.
    G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251–14269.CrossRefGoogle Scholar
  46. 46.
    G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169.CrossRefGoogle Scholar
  47. 47.
    G. Kresse, J. Furthmuller, Comput. Mat. Sci., 1996, 6, 15–50.CrossRefGoogle Scholar
  48. 48.
    G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758.CrossRefGoogle Scholar
  49. 49.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan, Comput. Mat. Sci., 2002, 25, 478–492.CrossRefGoogle Scholar
  50. 50.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.01; Gaussian, Inc.: Wallingford, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. A. Korlyukov
    • 1
    • 2
    Email author
  • D. E. Arkhipov
    • 1
  • A. D. Volodin
    • 1
  • Vad. V. Negrebetskii
    • 2
  • A. A. Nikolin
    • 2
    Email author
  • E. P. Kramarova
    • 2
  • A. G. Shipov
    • 2
  • Yu. I. Baukov
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.N. I. Pirogov Russian National Research Medical UniversityMoscowRussian Federation

Personalised recommendations