Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 1–8 | Cite as

Clustering of nonvalently bonded NO2…O2N fragments at C(sp3) atoms

  • A. O. Dmitrienko
  • I. V. AnanyevEmail author
Full Articles
  • 6 Downloads

Abstract

Based on the "invariom" approach and the "Atoms in Molecules" theory, a simplified method is proposed to reveal and analyze bonding interatomic interactions using large arrays of structural data. The technique was tested taking nonvalent interactions between nitro groups bonded to C(sp3) atoms as examples. Geometric clustering of structural fragments was performed and the interaction strength and covalent contribution distributions were analyzed. Relationships between the fragment clustering results and nonvalent bonding pattern features are discussed.

Key words

clustering analysis strength of interatomic interactions “invariom” approach nitro group electron density “Atoms in Molecules” theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-B. Buergi, J. D. Dunitz, Acc. Chem. Res., 1983, 16, 153.CrossRefGoogle Scholar
  2. 2.
    H.-B. Buergi, Angew. Chem., Int. Ed. Engl., 1975, 14, 460.CrossRefGoogle Scholar
  3. 3.
    K. A. Lyssenko, Mendeleev Commun., 2012, 22, 1.CrossRefGoogle Scholar
  4. 4.
    A. V. Vologzhanina, S. V. Kats, L. V. Penkova, V. A. Pavlenko, N. N. Efimov, V. V. Minin, I. L. Eremenko, Acta Crystallogr., 2015, B71, 543.Google Scholar
  5. 5.
    C. F. Matta, R. J. Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA, Drug Design, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, 2007.CrossRefGoogle Scholar
  6. 6.
    A. M. Pendas, E. Francisco, M. A. Blanco, C. Gatti, Chem. Eur. J., 2007, 13, 9362.CrossRefGoogle Scholar
  7. 7.
    R. F. W. Bader, H. Esse´n, J. Chem. Phys., 1984, 80, 1943.CrossRefGoogle Scholar
  8. 8.
    D. Cremer, E. A. Kraka, Croat. Chem. Acta, 1984, 57, 1259.Google Scholar
  9. 9.
    C. S. Lopez, A. R. de Lera, Curr. Org. Chem., 2011, 15, 3576.CrossRefGoogle Scholar
  10. 10.
    I. V. Ananyev, K. A. Lyssenko, Mendeleev Commun., 2016, 26, 338.CrossRefGoogle Scholar
  11. 11.
    I. Alkorta, I. Rozas, J. Elguero, Struct. Chem., 1998, 9, 243.CrossRefGoogle Scholar
  12. 12.
    E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.CrossRefGoogle Scholar
  13. 13.
    M. V. Vener, A. N. Egorova, A. V. Churakov, V. G. Tsirelson, J. Comput. Chem., 2012, 33, 2303.CrossRefGoogle Scholar
  14. 14.
    E. V. Bartashevich, Y. V. Matveychuk, E. A. Troitskaya, V. G. Tsirelson, Comput. Theor. Chem., 2014, 1037, 53.CrossRefGoogle Scholar
  15. 15.
    G. Saleh, C. Gatti, L. L. Presti, Comput. Theor. Chem., 2015, 1053, 53.CrossRefGoogle Scholar
  16. 16.
    J. R. Lane, A. S. Hansen, K. Mackerprang, H. G. Kjaergaard, J. Phys. Chem. A, 2017, 121, 3452.CrossRefGoogle Scholar
  17. 17.
    I. V. Ananyev, V. A. Karnoukhova, A. O. Dmitrienko, K. A. Lyssenko, J. Phys. Chem. A, 2017, 121, 4517.CrossRefGoogle Scholar
  18. 18.
    A. A. Romanova, K. A. Lyssenko, I. V. Ananyev, J. Comput. Chem., 2018, 39, 1607.CrossRefGoogle Scholar
  19. 19.
    J. M. Bak, S. Domagala, C. Hubschle, C. Jelsch, B. Dittrich, P. M. Dominiak, Acta Crystallogr., 2011, A67, 141.Google Scholar
  20. 20.
    Yu. V. Nelyubina, K. A. Lyssenko, Chem. Eur. J., 2015, 21, 9733.CrossRefGoogle Scholar
  21. 21.
    Yu. V. Nelyubina, A. A. Korlyukov, K. A. Lyssenko, RSC Adv., 2015, 5, 75360.CrossRefGoogle Scholar
  22. 22.
    D. Kirzhnits, Sov. Phys. JETP, 1957, 5, 64.Google Scholar
  23. 23.
    I. L. Dalinger, K. Yu. Suponitsky, T. K. Schkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780.CrossRefGoogle Scholar
  24. 24.
    F. H. Allen, Acta Crystallogr., 2002, B58, 380; Cambridge Structural Database, release 2018.Google Scholar
  25. 25.
    L. J. P. van der Maaten, G. E. Hinton, J. Mach. Learn. Res., 2008, 9, 2579.Google Scholar
  26. 26.
    M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, Proc. 1999 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD ´99), ACM, New York, NY, USA, 1999, p. 49–60.Google Scholar
  27. 27.
    C. B. Hubschle, B. Dittrich, J. Appl. Crystallogr., 2011, 44, 238.CrossRefGoogle Scholar
  28. 28.
    N. K. Hansen, P. Coppens, Acta Crystallogr., 1978, A34, 909.Google Scholar
  29. 29.
    Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.CrossRefGoogle Scholar
  30. 30.
    F. Weigend, R. Ahlrichs, PhysChemChemPhys, 2005, 7, 3297.Google Scholar
  31. 31.
    A. Volkov, P. Macchi, L. Farrugia, XD2006–a Computer Program for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors, 2006; https://www.chem.gla.ac.uk/~louis/xd-home/.Google Scholar
  32. 32.
    Y. V. Vishnevskiy, D. S. Tikhonov, J. Schwabedissen, H.-G. Stammler, R. Moll, B. Krumm, T. M. Klapotke, N. W. Mitzel, Angew. Chem., Int. Ed. Engl., 2017, 56, 9619.CrossRefGoogle Scholar
  33. 33.
    A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations