Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 351–356 | Cite as

Pressure, temperature, and solvent effects on the rates of reactions of 3,4-dihydro-2H-pyran with tetracyanoethylene and 4-phenyl-1,2,4-triazoline-3,5-dione

  • V. D. KiselevEmail author
  • O. V. Anikin
  • D. A. Kornilov
  • A. O. Kolesnikova
  • A. A. Shulyat´ev
  • I. A. Sedov
  • A. T. Gubaidullin
Full Articles
  • 11 Downloads

Abstract

The effects of high hydrostatic pressure, temperature, and solvent on the rates of reactions of tetracyanoethylene (1) and 4-phenyl-1,2,4-triazoline-3,5-dione (2) with 3,4-dihydro-2Hpyran ( 3) were studied. The X-ray diffraction analysis showed that the reaction of compounds 1 and 3 occurs with the formation of the cyclobutane adduct. The reaction is characterized by enhanced entropy and activation volume, as well as a high influence of the solvent polarity (ET) on the rate (R = 0.975). The course of the reaction 2 + 3 differs sharply from the reaction 1 + 3 by the values of entropy and activation volume, the absence of the effect of the solvent polarity on the rate, and the presence of mono-, di-, and trimeric reaction products. Possible routes of these reactions are considered.

Key words

3,4-dihydro-2H-pyran tetracyanoethylene 4-phenyl-1,2,4-triazoline-3,5-dione reaction rate pressure effect solvent effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Houk, L. L. Munchausen, J. Am. Chem. Soc., 1976, 98, 937.CrossRefGoogle Scholar
  2. 2.
    V. D. Kiselev, A. I. Konovalov, J. Phys. Org. Chem., 2009, 22, 466.CrossRefGoogle Scholar
  3. 3.
    V. D. Kiselev, I. I. Shakirova, D. A. Kornilov, H. A. Kashaeva, L. N. Potapova, A. I. Konovalov, J. Phys. Org. Chem., 2013, 26, 47.CrossRefGoogle Scholar
  4. 4.
    V. D. Kiselev, D. A. Kornilov, A. I. Konovalov, Int. J. Chem. Kinet., 2017, 49, 562.CrossRefGoogle Scholar
  5. 5.
    V. D. Kiselev, D. A. Kornilov, A. I. Konovalov, Russ. Chem. Bull., 2015, 64, 956].CrossRefGoogle Scholar
  6. 6.
    J. Sauer, Angew. Chem., 1967, 79, 76.CrossRefGoogle Scholar
  7. 7.
    R. Huisgen, Angew. Chem., 1963, 76, 742.CrossRefGoogle Scholar
  8. 8.
    V. D. Kiselev, I. I. Shakirova, D. A. Kornilov, H. A. Kashaeva, L. N. Potapova, A. I. Konovalov, J. Phys. Org. Chem., 2013, 26, 47.CrossRefGoogle Scholar
  9. 9.
    S. Rayne, K. Forest, J. Chem. Eng. Data, 2010, 55, 5359.CrossRefGoogle Scholar
  10. 10.
    J. D. Cox, G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, London–New York, 1970, 253 pp.Google Scholar
  11. 11.
    R. Huisgen, G. Steiner, J. Am. Chem. Soc., 1973, 95, 5056.CrossRefGoogle Scholar
  12. 12.
    R. Huisgen, R. Schug, G. Steiner, Angew. Chem., Int. Ed., 13, 80.Google Scholar
  13. 13.
    J. H. Hall, M. L. Jones, J. Org. Chem., 1983, 48, 822.CrossRefGoogle Scholar
  14. 14.
    R. Huisgen, G. Steiner, J. Am. Chem. Soc., 1973, 95, 5054.CrossRefGoogle Scholar
  15. 15.
    R. Huisgen, Acc. Chem. Res., 1977, 10, 117.CrossRefGoogle Scholar
  16. 16.
    M. B. Grdina, M. Orfanopoulos, L. M. Stephenson, J. Am. Chem. Soc., 1979, 101, 3111.CrossRefGoogle Scholar
  17. 17.
    C.-C. Cheng, C. A. Seymour, M. A. Petti, F. D. Greene, J. Org. Chem., 1984, 49, 2910.CrossRefGoogle Scholar
  18. 18.
    E. K. von Gustorf, D. V. White, B. Kim, D. Hess, J. Leitich, J. Org. Chem., 1970, 35, 1155.CrossRefGoogle Scholar
  19. 19.
    M. Squillacote, M. Mooney, J. De Felippis, J. Am. Chem. Soc., 1990, 112, 5365.CrossRefGoogle Scholar
  20. 20.
    S. F. Nelsen, S. J. Klein, J. Phys. Org. Chem., 1997, 10, 456.CrossRefGoogle Scholar
  21. 21.
    C. Rücker, D. Lang, J. Sauer, H. Friege, R. Sustmann, Chem. Ber., 1980, 113, 1663.CrossRefGoogle Scholar
  22. 22.
    R. C. Cookson, S. S. H. Gilani, I. D. R. Stevens, Tetrahedron Lett., 1962, 3, 615.CrossRefGoogle Scholar
  23. 23.
    J. Sauer, B. Schröder, Chem. Ber., 1967, 100, 678.CrossRefGoogle Scholar
  24. 24.
    G. W. Breton, K. A. Newton, J. Org. Chem., 2000, 65, 2863.CrossRefGoogle Scholar
  25. 25.
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley, Weinheim, 2004.Google Scholar
  26. 26.
    D. A. Kornilov, V. D. Kiselev, Int. J. Chem. Kinet., 2015, 47, 389.CrossRefGoogle Scholar
  27. 27.
    V. D. Kiselev, A. V. Bolotov, A. P. Satonin, I. I. Shakirova, H. A. Kashaeva, A. I. Konovalov, J. Phys. Chem. B, 2008, 112, 6674.CrossRefGoogle Scholar
  28. 28.
    V. D. Kiselev, D. A. Kornilov, A. I. Konovalov, Int. J. Chem. Kinet., 2017, 49, 562.CrossRefGoogle Scholar
  29. 29.
    APEX2 (Version 2.1), SAINTPlus, Data Reduction and Correction Program (Version 7.31A), BrukerAXS Inc., Madison, Wisconsin, USA, 2006.Google Scholar
  30. 30.
    G. Sheldrick, SADABS, Program for Empirical X-ray Absorption Correction, Bruker-Nonius, Göttingen, Germany, 2004.Google Scholar
  31. 31.
    G. Sheldrick, SHELXTL v.6.12, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2000.Google Scholar
  32. 32.
    J. K. Williams, D. W. Wiley, B. C. Mckusick, J. Am. Chem. Soc., 1962, 84, 2210.CrossRefGoogle Scholar
  33. 33.
    V. D. Kiselev, D. A. Kornilov, O. V. Anikin, I. A. Sedov, A. I. Konovalov, Russ. J. Org. Chem., 2017, 53, 1864.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • V. D. Kiselev
    • 1
    Email author
  • O. V. Anikin
    • 1
  • D. A. Kornilov
    • 1
  • A. O. Kolesnikova
    • 1
  • A. A. Shulyat´ev
    • 1
  • I. A. Sedov
    • 1
  • A. T. Gubaidullin
    • 2
  1. 1.A. M. Butlerov Chemical InstituteKazan Federal UniversityKazanRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Research Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations