Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 313–327 | Cite as

Mechanism of electrochemical reduction of 5-thio derivatives of 2(5H)-furanone

  • L. Z. LatypovaEmail author
  • G. A. Chmutova
  • A. R. Kurbangalieva
  • V. V. Yanilkin
Full Articles
  • 5 Downloads

Abstract

The anionoid elimination of the substituent from position 5 of the lactone ring is the predominant pathway of electrochemical reduction of 5-arylsulfanyl- and 5-arylsulfonyl-3,4-dichloro-2(5H)-furanones in acetonitrile. The contribution of the competing elimination of the chloride ion increases on going to 3,4-dichloro-5-ethylsulfanyl-2(5H)-furanone. An experimental criterion based on the morphology of cyclic voltammograms was proposed for identification of a particular pathway of electroreduction of 2(5H)-furanone derivatives.

Key words

2(5H)-furanones thioethers sulfones mucochloric acid electrochemical reduction voltammetry quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zhang, K. D. Sarma, T. T. Curran, Synlett, 2013, 24, 550.CrossRefGoogle Scholar
  2. 2.
    K. Biswas, R. Gholap, P. Srinivas, S. Kanyal, K. Das Sarma, RSC Adv., 2014, 4, 2538.CrossRefGoogle Scholar
  3. 3.
    A. R. Kurbangalieva, O. A. Lodochnikova, N. F. Devyatova, E. A. Berdnikov, O. I. Gnezdilov, I. A. Litvinov, G. A. Chmutova, Tetrahedron, 2010, 66, 9945.CrossRefGoogle Scholar
  4. 4.
    F. Bellina, R. Rossi, Curr. Org. Chem., 2004, 8, 1089.CrossRefGoogle Scholar
  5. 5.
    A. A. Avetisyan, M. T. Dangyan, Russ. Chem. Rev., 1977, 46, 643.CrossRefGoogle Scholar
  6. 6.
    D. W. Knight, Contemp. Org. Synth., 1994, 1, 287.CrossRefGoogle Scholar
  7. 7.
    R. Rossi, M. Lessi, C. Manzini, G. Marianetti, F. Bellina, Curr. Org. Chem., 2017, 21, 964.CrossRefGoogle Scholar
  8. 8.
    M. V. N. De Souza, Mini-Rev. Org. Chem., 2005, 2, 139.CrossRefGoogle Scholar
  9. 9.
    S. Kumar, R. Garg, A. Kabra, World J. Pharm. Res., 2013, 1, 83.Google Scholar
  10. 10.
    A. R. Kurbangalieva, N. F. Devyatova, A. V. Bogdanov, E. A. Berdnikov, T. G. Mannafov, D. B. Krivolapov, I. A. Litvinov, G. A. Chmutova, Phosphorus, Sulfur Silicon Relat. Elem., 2007, 182, 607.CrossRefGoogle Scholar
  11. 11.
    N. F. Devyatova, L. S. Kosolapova, A. R. Kurbangalieva, E. A. Berdnikov, O. A. Lodochnikova, I. A. Litvinov, G. A. Chmutova, Russ. J. Org. Chem., 2008, 44, 1225.CrossRefGoogle Scholar
  12. 12.
    A. R. Kurbangalieva, N. F. Devyatova, L. S. Kosolapova, O. A. Lodochnikova, E. A. Berdnikov, I. A. Litvinov, G. A. Chmutova, Russ. Chem. Bull., 2009, 58, 126.CrossRefGoogle Scholar
  13. 13.
    L. T. Hoang, A. R. Kurbangalieva, A. S. Ezhova, E. A. Berdnikov, G. A. Chmutova, Butlerov. Soobshch. [Butlerov Commun.] 2015, 42, 33 (in Russian).Google Scholar
  14. 14.
    A. R. Kurbangalieva, L. T. Hoang, O. A. Lodochnikova, M. Yu. Kuzmicheva, A. R. Pradipta, K. Tanaka, G. A. Chmutova, Russ. Chem. Bull., 2016, 65, 1278.CrossRefGoogle Scholar
  15. 15.
    L. Z. Latypova, E. S. Saigitbatalova, D. R. Chulakova, O. A. Lodochnikova, A. R. Kurbangalieva, E. A. Berdnikov, G. A. Chmutova, Russ. J. Org. Chem., 2014, 50, 521.CrossRefGoogle Scholar
  16. 16.
    L. Z. Latypova, E. Sh. Saigitbatalova, A. R. Kurbangalieva, O. A. Lodochnikova, G. A. Chmutova, Butlerov. Soobshch. [Butlerov Commun.], 2016, 45, 89 (in Russian).Google Scholar
  17. 17.
    I. S. Sharafutdinov, E. Y. Trizna, D. R. Baidamshina, M. N. Ryzhikova, R. R. Sibgatullina, A. M. Khabibrakhmanova, L. Z. Latypova, A. R. Kurbangalieva, E. V. Rozhina, M. Klinger-Strobel, R. F. Fakhrullin, M. W. Pletz, M. I. Bogachev, A. R. Kayumov, O. Makarewicz, Front. Microbiol., 2017, 8, 2246.CrossRefGoogle Scholar
  18. 18.
    N. F. Devyatova, A. R. Kurbangalieva, V. V. Yanilkin, G. A. Chmutova, Russ. Chem. Bull., 2009, 58, 908.CrossRefGoogle Scholar
  19. 19.
    J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Gramlich, C. B. Knobler, P. Seiler, F. Diederich, Helv. Chim. Acta, 1995, 78, 13.CrossRefGoogle Scholar
  20. 20.
    B. A. Arbuzov, E. N. Klimovitskii, M. B. Timirbaev, Chem. Heterocycl. Compd., 1980, 16, 14.CrossRefGoogle Scholar
  21. 21.
    R. T. LaLonde, H. Perakyla, G. P. Cook, C. W. Dence, Environ. Toxicol. Chem., 1990, 9, 687.Google Scholar
  22. 22.
    J. Zhang, P. G. Blazecka, D. Belmont, J. G. Davidson, Org. Lett., 2002, 4, 4559.CrossRefGoogle Scholar
  23. 23.
    O. A. Lodochnikova, L. Z. Latypova, R. M. Khakimov, A. R. Kurbangalieva, D. B. Krivolapov, I. A. Litvinov, Russ. J. Struct. Chem., 2013, 54, 213.CrossRefGoogle Scholar
  24. 24.
    E. I. Ivanov, M. Ya. Fioshin, D. S. Gorbenko-Germanov, G. S. Solov´ev, Elektrokhimiya [Electrochemistry], 1990, 26, 503 (in Russian).Google Scholar
  25. 25.
    L. Z. Latypova, V. V. Yanilkin, A. R. Kurbangalieva, E. A. Berdnikov, G. A. Chmutova, Russ. Chem. Bull., 2012, 61, 568.CrossRefGoogle Scholar
  26. 26.
    A. Weissberger, E. S. Proskauer, J. A. Riddic, E. E. Toops, Organic Solvents. Physical Properties and Methods of Purifications, Interscience Publishers, Inc., New York–London, 1955.Google Scholar
  27. 27.
    O. N. Vlasov, B. N. Rybakov, L. M. Kogan, Zh. Prikl. Khim. [Russ. J. Appl. Chem.], 1968, 41, 373 (in Russian).Google Scholar
  28. 28.
    T. I. Bobrova, S. D. Volodkovich, S. S. Kukalenko, Zh. Obshch. Khim. [Russ. J. Gen. Chem.], 1975, 45, 1123 (in Russian).aaaaaGoogle Scholar
  29. 29.
    A. Ghorbani-Choghamarani, M. Nikoorazm, H. Goud arziafshar, A. Shokr, H. Almasi, J. Chem. Sci., 2011, 123, 453.CrossRefGoogle Scholar
  30. 30.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Version 7.0 (Revision A.2), Gaussian, Inc., Wallingford (CT), 2009.Google Scholar
  31. 31.
    J. Tomasi, M. Persico, Chem. Rev., 1994, 94, 2027.CrossRefGoogle Scholar
  32. 32.
    E. A. Berdnikov, Doctoral Thesis (Chemistry), Kazan State Univ., Kazan, 1988, 442 pp. (in Russian).Google Scholar
  33. 33.
    Ch. K. Mann, K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, Inc., New York, 1970, 560 pp.Google Scholar
  34. 34.
    Yu. Yu. Lurie, Spravochnik po analiticheskoi khimii [Handbook on Analytic Chemistry], Khimiya, Moscow, 1989, 448 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • L. Z. Latypova
    • 1
    Email author
  • G. A. Chmutova
    • 1
  • A. R. Kurbangalieva
    • 1
  • V. V. Yanilkin
    • 2
  1. 1.A. M. Butlerov Institute of ChemistryKazan Federal UniversityKazanRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryFederal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”KazanRussian Federation

Personalised recommendations