Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 275–283 | Cite as

Mononuclear gallium complexes with the redox-active dmp-bian ligand (dmp-bian is 1,2-bis[(2,6-dimethylphenyl)imino]acenaphthene): synthesis and reactions with alkynes

  • A. A. SkatovaEmail author
  • N. L. Bazyakina
  • I. L. Fedushkin
  • A. V. Piskunov
  • N. O. Druzhkov
  • A. V. Cherkasov
Full Articles
  • 9 Downloads

Abstract

The direct reduction of 1,2-bis[(2,6-dimethylphenyl)imino]acenaphthene (dmp-bian (1)) with gallium metal in toluene affords the solvent-free bis-ligand complex [(dmp-bian)2Ga] (2), in which two diimine ligands are in different oxidation states (radical-anionic and dianionic). The addition of phenylacethylene to the Ga–N–C moiety of the dianionic ligand of compound 2 gives the complex [(dmp-bian)Ga(HC=CPh)(dmp-bian)] (3), in which new Ga–C and C–C bonds are formed. The reaction of 2 with hex-1-yne produces the gallium dialkynyl complex [(dmp-bian)Ga(C≡C–Bu)2] (4), with the metal atom bonded to the dmp-bian radical anion. Paramagnetic compounds 24 were characterized by ESR spectroscopy and X-ray diffraction. The known compound dmp-bian was structurally characterized for the first time.

Key words

gallium acenaphthene-1,2-diimines redox-active ligands synthesis structure X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grü zmacher, Angew. Chem., Int. Ed., 2008, 47, 1814.CrossRefGoogle Scholar
  2. 2.
    W. Kaim, B. Schwederski, Coord. Chem. Rev., 2010, 254, 1580.CrossRefGoogle Scholar
  3. 3.
    W. I. Dzik, J. I. van der Vlugt, J. N. H. Reek, B. de Bruin, Angew. Chem., Int. Ed., 2011, 50, 3356.CrossRefGoogle Scholar
  4. 4.
    J. I. van der Vlugt, Eur. J. Inorg. Chem., 2012, 363.Google Scholar
  5. 5.
    V. Lyaskovskyy, B. de Bruin, B. ACS Catal., 2012, 2, 270.CrossRefGoogle Scholar
  6. 6.
    P. J. Chirik, Inorg. Chem., 2011, 50, 9737.CrossRefGoogle Scholar
  7. 7.
    M. Königsmann, N. Donati, D. Stein, H. Schönberg, J. Harmer, A. Sreekanth, H. Grützmacher, Angew. Chem., Int. Ed., 2007, 46, 3567.CrossRefGoogle Scholar
  8. 8.
    M. R. Ringenberg, S. L. Kokatam, Z. M. Heiden, T. B. Rauchfuss, J. Am. Chem. Soc., 2008, 130, 788.CrossRefGoogle Scholar
  9. 9.
    M. R. Ringenberg, T. B. Rauchfuss, Eur. J. Inorg. Chem., 2012, 490.Google Scholar
  10. 10.
    M. W. Bouwkamp, A. C. Bowman, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc., 2006, 128, 13340.CrossRefGoogle Scholar
  11. 11.
    P. J. Chirik, K. Wieghardt, Science, 2010, 327, 794.CrossRefGoogle Scholar
  12. 12.
    C. A. Lippert, S. A. Arnstein, C. D. Sherrill, J. D. Soper, J. Am. Chem. Soc., 2010, 132, 3879.CrossRefGoogle Scholar
  13. 13.
    K. J. Blackmore, N. Lal, J. W. Ziller, A. F. Heyduk, J. Am. Chem. Soc., 2008, 130, 2728.CrossRefGoogle Scholar
  14. 14.
    A. F. Heyduk, R. A. Zarkesh, A. I. Nguyen, Inorg. Chem., 2011, 50, 9849.CrossRefGoogle Scholar
  15. 15.
    T. J. M. de Bruin, L. Magna, P. Raybaud, H. Toulhoat, Organometallics, 2003, 22, 3404.CrossRefGoogle Scholar
  16. 16.
    A. N. J. Blok, P. H. M. Budzelaar, A. W. Gal, Organometallics, 2003, 22, 2564.CrossRefGoogle Scholar
  17. 17.
    E. Otten, A. A. Batinas, A. Meetsma, B. Hessen, J. Am. Chem. Soc., 2009, 131, 5298.CrossRefGoogle Scholar
  18. 18.
    H. Tsurugi, T. Saito, H. Tanahashi, J. Arnold, K. Mashima, J. Am. Chem. Soc., 2011, 133, 18673.CrossRefGoogle Scholar
  19. 19.
    E. Otten, A. Meetsma, B. Hessen, J. Am. Chem. Soc., 2007, 129, 10100.CrossRefGoogle Scholar
  20. 20.
    J. W. Whittaker, Chem. Rev., 2003, 103, 2347.CrossRefGoogle Scholar
  21. 21.
    L. Que, W. B. Tolman, Nature, 2008, 455, 333.CrossRefGoogle Scholar
  22. 22.
    N. J. Hill, I. Vargas-Baca, Alan H. Cowley, Dalton Trans., 2009, 2, 240.CrossRefGoogle Scholar
  23. 23.
    M. W. Van Laren, C. J. Elsevier, Angew. Chem., Int. Ed., 1999, 38, 3715.CrossRefGoogle Scholar
  24. 24.
    R. Van Belzen, H. Hoffmann, C. J. Elsevier, Angew. Chem., Int. Ed., 1997, 36, 1743.CrossRefGoogle Scholar
  25. 25.
    G. A. Grasa, R. Singh, E. D. Stevens, S. P. Nolan, J. Organomet. Chem., 2003, 687, 269.CrossRefGoogle Scholar
  26. 26.
    A. E. Cherian, E. B. Lobkovsky, G. W. Coates, Chem. Commun., 2003, 20, 2566.CrossRefGoogle Scholar
  27. 27.
    V. Fassina, C. Ramminger, M. Seferin, R. S. Mauler, R. F. de Souza, A. L. Monteiro, Macromol. Rapid Commun., 2003, 24, 667.CrossRefGoogle Scholar
  28. 28.
    M. D. Leatherman, S. A. Svejda, L. K. Johnson, M. Brookhart, J. Am. Chem. Soc., 2003, 125, 3068.CrossRefGoogle Scholar
  29. 29.
    S. S. Ivanchev, G. A. Tolstikov, V. K. Badaev, N. I. Ivancheva, I. I. Oleinik, C. Ya. Khaikin, I. V. Oleinik, Polym. Sci., Ser. A, B, 2002, 44, 1478.Google Scholar
  30. 30.
    I. Kim, J. M. Hwang, J. K. Lee, C. S. Ha, S. I. Woo, Macromol. Rapid Commun., 2003, 24, 508.CrossRefGoogle Scholar
  31. 31.
    W. Liu, M. Brookhart, Organometallics, 2004, 23, 6099.CrossRefGoogle Scholar
  32. 32.
    V. Appukuttan, J. H. Kim, Ch. S. Ha, I. Kim, Korean J. Chem. Eng., 2008, 25, 423.CrossRefGoogle Scholar
  33. 33.
    V. Rosar, A. Meduri, T. Montini, F. Fini, C. Carfagna, P. Fornasiero, G. Balducci, E. Zangrando, B. Milani, Chem. Cat. Chem., 2014, 6, 2403.Google Scholar
  34. 34.
    P. Wojcik, V. Rosar, A. Gniewek, B. Milani, A. M. Tizeciak, J. Molekular Catalysis A: Chemical, 2016, 425, 322.CrossRefGoogle Scholar
  35. 35.
    D. N. Vaccarello, K. S. O´Connor, P. Iacono, J. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc., 2018, 140, 6208.CrossRefGoogle Scholar
  36. 36.
    I. L. Fedushkin, N. M. Khvoinova, A. A. Skatova, G. K. Fukin, Angew.Chem., Int. Ed., 2003, 42, 5223.CrossRefGoogle Scholar
  37. 37.
    I. L. Fedushkin, V. A. Chudakova, G. K. Fukin, S. Dechert, M. Hummert, H. Schumann, Russ. Chem. Bull., 2004, 53, 2744.CrossRefGoogle Scholar
  38. 38.
    I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, N. M. Khvoinova, A. Yu. Baurin, Organometallics, 2004, 23, 3717.CrossRefGoogle Scholar
  39. 39.
    I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, V. K. Cherkasov, S. Dechert, H. Schumann, Russ. Chem. Bull., 2004, 53, 2142.CrossRefGoogle Scholar
  40. 40.
    I. L. Fedushkin, A. S. Nikipelov, A. A. Skatova, O. V. Maslova, A. N. Lukoyanov, G. K. Fukin, A. V. Cherkasov, Eur. J. Inorg. Chem., 2009, 3742.Google Scholar
  41. 41.
    I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159.CrossRefGoogle Scholar
  42. 42.
    V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, N. L. Bazyakina, A. V. Piskunov, A. V. Cherkasov, I. L. Fedushkin, Inorg. Chem., 2017, 56, 13401.CrossRefGoogle Scholar
  43. 43.
    I. L. Fedushkin, V. A. Dodonov, A. A. Skatova, V. G. Sokolov, A. V. Piskunov, G. K. Fukin, Chem. Eur. J., 2018, 24, 1877.CrossRefGoogle Scholar
  44. 44.
    I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, X. J. Yang, V. A. Chudakova, A. V. Piskunov, S. Demeshko, E. V. Baranov, Inorg. Chem., 2016, 55, 9047.CrossRefGoogle Scholar
  45. 45.
    V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, A. V. Piskunov, M. A. Samsonov, I. L. Fedushkin, Russ. Chem. Bull., 2017, 66, 1569.CrossRefGoogle Scholar
  46. 46.
    O. V. Kazarina, C. Gourlaouen, L. Karmazin, A. G. Morozov, I. L. Fedushkin, S. Dagorne, Dalton Transactions, 2018, 47, 13800.CrossRefGoogle Scholar
  47. 47.
    I. L. Fedushkin, N. M. Khvoinova, A. Yu. Baurin, V. A. Chudakova, A. A. Skatova, V. K. Cherkasov, G. K. Fukin, E. V. Baranov, Russ. Chem. Bull., 2006, 55, 74.CrossRefGoogle Scholar
  48. 48.
    I. L. Fedushkin, V. A. Chudakova, A. A. Skatova, N. M. Khvoinova, Yu. A. Kurskii, T. A. Glukhova, G. K. Fukin, S. Dechert, M. Hummert, H. Schumann, Z. Anorg. Chem., 2004, 630, 501.CrossRefGoogle Scholar
  49. 49.
    I. L. Fedushkin, A. A. Skatova, N. L. Bazyakina, V. A. Chudakova, N. M. Khvoinova, A. S. Nikipelov, O. V. Eremenko, A. V. Piskunov, G. K. Fukin, Russ. Chem. Bull., 2013, 62, 1815.CrossRefGoogle Scholar
  50. 50.
    I. L. Fedushkin, N. M. Khvoinova, A. V. Piskunov, G. K. Fukin, M. Hummert, H. Schumann, Russ. Chem. Bull., 2006, 55, 722.CrossRefGoogle Scholar
  51. 51.
    I. L. Fedushkin, A. S. Nikipelov, K. A. Lyssenko, J. Am. Chem. Soc., 2010, 132, 7874.CrossRefGoogle Scholar
  52. 52.
    I. L. Fedushkin, A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherkasov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 255.CrossRefGoogle Scholar
  53. 53.
    M. V. Moskalev, A. A. Skatova, V. A. Chudakova, N. M. Khvoinova, N. L. Bazyakina, A. G. Morozov, O. V. Kazarina, A. V. Cherkasov, G. A. Abakumov, I. L. Fedushkin, Russ. Chem. Bull., 2015, 64, 2830.CrossRefGoogle Scholar
  54. 54.
    I. L. Fedushkin, O. V. Kazarina, A. N. Lukoyanov, A. A. Skatova, N. L. Bazyakina, A. V. Cherkasov, E. Palamidis, Organometallics, 2015, 34, 1498.CrossRefGoogle Scholar
  55. 55.
    I. L. Fedushkin, O. V. Eremenko, A. A. Skatova, A. V. Piskunov, G. K. Fukin, S. Yu. Ketkov, E. Irran, H. Schumann, Organometallics, 2009, 28, 3863.CrossRefGoogle Scholar
  56. 56.
    J. Emsley, The Elements, 2nd ed., Oxford University Press, Oxford, 1991.Google Scholar
  57. 57.
    H. M. Tuononen, A. F. Armstrong, Dalton Trans., 2006, 1885.Google Scholar
  58. 58.
    C. W. Lange, B.J. Conklin, C. G. Pierpont, Inorg. Chem., 1994, 33, 1276.CrossRefGoogle Scholar
  59. 59.
    A. V. Piskunov, A. V. Maleeva, G. K. Fukin, E. V. Baranov, O. V. Kuznetsova, Russ. J. Coord. Chem., 2010, 36, 161.CrossRefGoogle Scholar
  60. 60.
    A. V. Piskunov, A. V. Maleeva, G. K. Fukin, A. S. Bogomyakov, V. K. Cherkasov, G. A. Abakumov, Dalton Trans., 2011, 40, 718.CrossRefGoogle Scholar
  61. 61.
    A. V. Piskunov, I. N. Mescheryakova, A. V. Maleeva, G. K. Fukin, Eur. J. Inorg. Chem., 2012, 4318.Google Scholar
  62. 62.
    A. L. Gottumukkakala, J. F. Teichert, D. Heijnen, N. Eisink, S. van Dijk, C. Ferrer, A. van den Hoogeband, A. J. Minnaard, J. Org. Chem., 2011, 76, 3498.CrossRefGoogle Scholar
  63. 63.
    I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, Angew. Chem., Int. Ed., 2003, 42, 3294.CrossRefGoogle Scholar
  64. 64.
    H.-C. Weiss, D. Bläser, R. Boese, B. M. Doughan, M. M. Haley, Chem. Commun., 1997, 1703.Google Scholar
  65. 65.
    H. Kawaguchi, Y. Yamamoto, K. Asaoka, K. Tatsumi, Organometallics, 1998, 17, 4380.CrossRefGoogle Scholar
  66. 66.
    Agilent (2011), CrysAlis Pro. Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2011.Google Scholar
  67. 67.
    Bruker (2012), APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2012.Google Scholar
  68. 68.
    L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3.CrossRefGoogle Scholar
  69. 69.
    G. M. Sheldrick, Acta Cryst., 2015, C71Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • A. A. Skatova
    • 1
    Email author
  • N. L. Bazyakina
    • 1
  • I. L. Fedushkin
    • 1
  • A. V. Piskunov
    • 1
  • N. O. Druzhkov
    • 1
  • A. V. Cherkasov
    • 1
  1. 1.G. A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations