Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 270–274 | Cite as

Mechanochemical method of producing triethoxysilane

  • M. N. TemnikovEmail author
  • A. A. Anisimov
  • S. M. Chistovalov
  • P. V. Zhemchugov
  • D. N. Kholodkov
  • S. N. Zimovets
  • Yu. S. Vysochinskaya
  • A. M. Muzafarova
Full Articles
  • 6 Downloads

Abstract

A mechanochemical method for synthesis of triethoxysilane from silicon-copper contact mass and ethyl alcohol in the developed vibration reactor is presented. It is shown that the process of a direct alkoxysilane synthesis in the vibro-boiling layer is affected by a series of control parameters such as the ratio between the contact mass and the mass of grinding bodies, the grinding body sizes and their ratios in a polydisperse mixture, power density. Optimization of these parameters allowed us to obtain HSi(OEt)3 with a selectivity of 50% at a silicon conversion of 90% without the use of promoters.

Key words

triethoxysilane direct synthesis alkoxysilanes mechanochemistry mechanochemical activation vibro-boiling layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Wakabayashi, K. Kuroda, ChemPlusChem, 2013, 78, 764.CrossRefGoogle Scholar
  2. 2.
    M. A. Brook, Chem.–A Eur. J., 2018, 8458.Google Scholar
  3. 3.
    M. A. Brook, J. B. Grande, F. Ganachaud, Adv. Polymer Sci., 2010, 235, 161–183.CrossRefGoogle Scholar
  4. 4.
    A. A. Kalinina, D. N. Kholodkov, I. V. Meshkov, M. A. Pigaleva, I. V. Elmanovich, Yu. A. Molodtsova, M. O. Gallyamov, A. M. Muzafarov, Russ. Chem. Bull., 2016, 65, 1104.CrossRefGoogle Scholar
  5. 5.
    A. A. Kalinina, E. V. Talalaeva, A. I. Demchenko, N. G. Vasilenko, Yu. A. Molodtsova, N. V. Demchenko, A. M. Muzafarov, Russ. Chem. Bull., 2016, 65, 1013.CrossRefGoogle Scholar
  6. 6.
    S. A. Milenin, A. A. Kalinina, V. V. Gorodov, N. G. Vasilenko, M. I. Buzin, A. M. Muzafarov, Russ. Chem. Bull., 2015, 64, 2498.CrossRefGoogle Scholar
  7. 7.
    A. Kalinina, N. Strizhiver, N. Vasilenko, N. Perov, N. Demchenko, A. Muzafarov, Silicon, 2014, 7, 95.CrossRefGoogle Scholar
  8. 8.
    M. A. Soldatov, N. A. Sheremeteva, A. A. Kalinina, N. V. Demchenko, O. A. Serenko, A. M. Muzafarov, Russ. Chem. Bull., 2014, 63, 267.CrossRefGoogle Scholar
  9. 9.
    M. A. Obrezkova, A. A. Kalinina, I. V. Pavlichenko, N. G. Vasilenko, M. V. Mironova, A. V. Semakov, V. G. Kulichikhin, M. I. Buzin, A. M. Muzafarov, Silicon, 2014, 7, 177.CrossRefGoogle Scholar
  10. 10.
    S. A. Milenin, A. A. Kalinina, N. V. Demchenko, N. G. Vasilenko, A. M. Muzafarov, Russ. Chem. Bull., 2013, 62, 705.CrossRefGoogle Scholar
  11. 11.
    E. V. Egorova, N. G. Vasilenko, N. V. Demchenko, E. A. Tatarinova, A. M. Muzafarov, Dokl. Chem., 2009, 424, 15.CrossRefGoogle Scholar
  12. 12.
    E. G. Rochow, W. E. Newton, Inorg. Chem., 1970, 9, 1071.CrossRefGoogle Scholar
  13. 13.
    W. Noll, Chemistry and Technology of Silicones, Academic Press, New York, 1968.Google Scholar
  14. 14.
    K. A. Andrianov, L. M. Khananashvili, Technologiya elementoorganocheskih monomerov i polymerov [Technology of Organometallic Monomers and Polymers], Khimiya, Moscow, 1973, 400 pp. (in Russian).Google Scholar
  15. 15.
    E. G. Rochow, Mir kremniya [Silicon World], Khimiya, Moscow, 1990, 147 (in Russian).Google Scholar
  16. 16.
    M. N. Temnikov, A. S. Zhiltsov, V. M. Kotov, I. V. Krylova, M. P. Egorov, A. M. Muzafarov, Silicon, 2015, 7, 69.CrossRefGoogle Scholar
  17. 17.
    M. Okamoto, H. Abe, Y. Kusama, E. Suzuki, Y. Ono, J. Organomet. Chem., 2000, 616, 74.CrossRefGoogle Scholar
  18. 18.
    L. Zhang, J. Li, K. Yang, C. Hu, S. Ge, C. Yang, Adv. Mater. Res., 2011, 233–235, 1534.Google Scholar
  19. 19.
    E. Suzuki, Y. Ono, Chem. Lett., 1990, 19, 47.CrossRefGoogle Scholar
  20. 20.
    G. J. Wang, F. X. Zhang, G. Y. Liu, X. N. Liu, Adv. Mater. Res., 2012, 455–456, 80.CrossRefGoogle Scholar
  21. 21.
    F. Chigondo, B. Zeelie, P. Watts, ACS Sustain. Chem. Eng., 2016, 4, 6237.CrossRefGoogle Scholar
  22. 22.
    Z. Lei, H. Sue, Y. Chunhui, L. Ji, Y. Kai, H. Chenfa, G. Shibin, Appl. Organomet. Chem., 2011, 25, 508.CrossRefGoogle Scholar
  23. 23.
    RF Pat. 2628299C1, 2017.Google Scholar
  24. 24.
    RF Pat. 2671732C1, 2018.Google Scholar
  25. 25.
    M. Temnikov, A. Anisimov, P. Zhemchugov, D. Kholodkov, A. S. Goloveshkin, A. Naumkin, S. Chistovalov, D. E. Katsoulis, A. Muzafarov, Green Chem., 2018, 20, 1962.CrossRefGoogle Scholar
  26. 26.
    A. I. Gorbunov, A. P. Belyi, G. G. Filippov, Chem. Rev., 1974, 43, 676.Google Scholar
  27. 27.
    R. A. Turetskaya, K. A. Andrianov, I. V. Trofimova, E. A. Chernyshev, Chem. Rev., 1975, 44, 444.Google Scholar
  28. 28.
    S. M. Tchistovalov, V. M. Kotov, A. A. Anisimov, M. N. Temnikov, P. V. Zhemchugov, A. M. Muzafarov, Khimi cheskoe i neftegasovoe mashinostroenie [Chemical and Oil and Gas eEgineering], 2018, 10, 3 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • M. N. Temnikov
    • 1
    Email author
  • A. A. Anisimov
    • 1
  • S. M. Chistovalov
    • 1
  • P. V. Zhemchugov
    • 1
  • D. N. Kholodkov
    • 1
  • S. N. Zimovets
    • 1
    • 2
  • Yu. S. Vysochinskaya
    • 1
  • A. M. Muzafarova
    • 1
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.N. S. Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations