Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 254–261 | Cite as

Application of density functional theory and optical spectroscopy for the prediction of the photophysical properties of Р-pyridylphospholanes

  • T. P. GerasimovaEmail author
  • A. V. Shamsieva
  • I. D. Strelnik
  • S. A. Katsyuba
  • E. I. Musina
  • A. A. Karasik
  • O. G. Sinyashin
Full Articles
  • 14 Downloads

Abstract

The spatial and electronic structure of a series of pyridyl-containing phospholanes, which are potential ligands for the synthesis of luminescent transition metal complexes, was studied using Raman, IR and UV spectroscopy in combination with quantum chemical calculations. A series of model 1-(pyridin-2-yl)phospholane derivatives with various substituents in the pyridyl fragment was considered. Correlations between electronic structure, spectral characteristics, as well as position and nature of substituents were revealed. The obtained results can be used for rational design of complexes with specified optical properties.

Key words

quantum-chemical computations vibrational spectroscopy pyridyl-containing phospholanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Zink, M. Bächle, T. Baumann, M. Nieger, M. Kühn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Bräse, Inorg. Chem., 2013, 52, 2292.CrossRefGoogle Scholar
  2. 2.
    Z. Liu, P. I. Djurovich, M. T. Whited, M. E. Thompson, Inorg. Chem., 2012, 51, 230–236.CrossRefGoogle Scholar
  3. 3.
    K. Chen, J. Shearer, V. J. Catalano, Inorg. Chem., 2015, 54, 6245–6256.CrossRefGoogle Scholar
  4. 4.
    E. I. Musina, A. V. Shamsieva, I. D. Strelnik, T. P. Gerasimova, D. B. Krivolapov, I. E. Kolesnikov, E. V. Grachova, S. P. Tunik, C. Bannwarth, S. Grimme, S. A. Katsyuba, A. A. Karasik, O. G. Sinyashin, Dalton Trans., 2016, 45, 2250–2260.CrossRefGoogle Scholar
  5. 5.
    E. E. Zvereva, A. R. Shagidullin, S. A. Katsyuba, J. Phys. Chem. A, 2011, 115, 63–69.CrossRefGoogle Scholar
  6. 6.
    S. A. Katsyuba, E. E. Zvereva, T. I. Burganov, J. Phys. Chem. A, 2013, 117, 6664–6670.CrossRefGoogle Scholar
  7. 7.
    E. Zvereva, S. Grimme, S. Katsyuba, T. Burganov, A. Zagidullin, V. Milyukov, O. Sinyashin, J. Phys. Chem A, 2013, 117, 6827–6834.CrossRefGoogle Scholar
  8. 8.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. Peralta, J. E. F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.Google Scholar
  9. 9.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  10. 10.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  11. 11.
    W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–2261.CrossRefGoogle Scholar
  12. 12.
    P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213–222.CrossRefGoogle Scholar
  13. 13.
    T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294–301.CrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.CrossRefGoogle Scholar
  15. 15.
    V. A. Sipachev, J. Mol. Structure., 2001, 567–568, 67–72.CrossRefGoogle Scholar
  16. 16.
    V. A. Sipachev, Struct. Chem., 2000, 11, 167–172.CrossRefGoogle Scholar
  17. 17.
    J. Baker, A. Jarzecki, P. Pulay, J. Phys. Chem. A, 1998, 102, 1412–1424.CrossRefGoogle Scholar
  18. 18.
    S.A. Katsyuba, J. Grunenberg, R. Schmutzler, J. Mol. Struct., 2001, 559, 315–320.CrossRefGoogle Scholar
  19. 19.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  20. 20.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396.CrossRefGoogle Scholar
  21. 21.
    F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143.CrossRefGoogle Scholar
  22. 22.
    C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • T. P. Gerasimova
    • 1
    Email author
  • A. V. Shamsieva
    • 1
  • I. D. Strelnik
    • 1
  • S. A. Katsyuba
    • 1
  • E. I. Musina
    • 1
  • A. A. Karasik
    • 1
  • O. G. Sinyashin
    • 1
  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryFederal Research Center” “Kazan Scientific Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations