Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2212–2223 | Cite as

Supramolecular structuring of aqueous solutions of strong acids: manifestations in light scattering, NMR, and oxidation kinetics. Does liquid have a drop-like nature?

2. Perchloric acid
  • G. V. LagodzinskayaEmail author
  • T. V. Laptinskaya
  • A. I. Kazakov
Full Articles
  • 2 Downloads

Abstract

The properties of large (~100 nm) aggregates, that is, solvate associates formed in aqueous solutions of perchloric acid, including their stability in time, dependence of their structure on the solution composition and preparation procedure, and effects of temperature and mechanical impacts were studied by light scattering methods. The slow supramolecular structuring in aqueous solutions of perchloric acid was compared with the previously studied structuring in aqueous solutions of nitric acid. A number of regularities and features that can significantly affect the chemical processes in these solutions were revealed.

Key words

aqueous solutions perchloric acid nitric acid supramolecular structure of the liquid reaction medium dynamic and static light scattering NMR spectroscopy kinetics mechanism oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, Russ. Chem. Bull, 2018, 67, 1838.CrossRefGoogle Scholar
  2. 2.
    Yu. I. Rubtsov, A. I. Kazakov, T. V. Sorokina, G. B. Manelis, Russ. Chem. Bull., 2008, 57, 2065; DOI: 10.1007/s11172-008-0280-8.CrossRefGoogle Scholar
  3. 3.
    G. B. Manelis, G. V. Lagodzinskaya, A. I. Kazakov, A. V. Chernyak, N. G. Yunda, L. S. Kurochkina, Russ. Chem. Bull., 2013, 62, 994; DOI: 10.1007/s11172-013-0130-1.CrossRefGoogle Scholar
  4. 4.
    G. V. Lagodzinskaya, N. G. Yunda, G. B. Manelis, Russ. Chem. Bull., 2006, 55, 597; DOI: 10.1007/s11172-006-0302-3.CrossRefGoogle Scholar
  5. 5.
    G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, L. S. Kurochkina, G. B. Manelis, Russ. Chem. Bull., 2016, 65, 984; DOI: 10.1007/s11172-016-1401-4.CrossRefGoogle Scholar
  6. 6.
    G. Cainelli, P. Galletti, D. Giacomini, Chem. Soc. Rev. 2009, 38, 990.CrossRefGoogle Scholar
  7. 7.
    L. O. Kononov, RSC Adv., 2015, 5, 46718.CrossRefGoogle Scholar
  8. 8.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4329.CrossRefGoogle Scholar
  9. 9.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4339.CrossRefGoogle Scholar
  10. 10.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 13976.CrossRefGoogle Scholar
  11. 11.
    Photon Correlation and Light Beating Spectroscopy, Eds H. Z. Cummins, E. R. Pike, Plenum Press, New York-London, 1974.Google Scholar
  12. 12.
    P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca-London, 1979, 324 pp.Google Scholar
  13. 13.
    Dynamic Light Scattering. The Method and Some Applications, Ed. W. Brown, Clarendon Press-New York-Oxford University Press, Oxford, 1993, 752.Google Scholar
  14. 14.
    M. N. Kirichenko, A. T. Sanoeva, L. L. Chaikov, Bull. Lebedev Phys. Institute, 2016, 43, 256.CrossRefGoogle Scholar
  15. 15.
    O. V. Vyshivannaya, T. V. Laptinskaya, Polym. Sci., Ser. A, 2012, 54, 364.CrossRefGoogle Scholar
  16. 16.
    G. V. Lagodzinskaia, I. Yu. Kozyreva, N. G. Yunda, G. B. Manelis, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1984, 33, 2017.CrossRefGoogle Scholar
  17. 17.
    A. I. Kitaigorodskii, Molecular Crystals and Molecules, Academic Press, London, 1973, 553 pp.Google Scholar
  18. 18.
    J.-M. Lehn, Rep. Prog. Phys., 2004, 67, 249.CrossRefGoogle Scholar
  19. 19.
    R. Roy, W. A. Tiller, I. Bell, M. R. Hoover, Mater. Res. Innov., 2005, 9, 577.CrossRefGoogle Scholar
  20. 20.
    D. P. Shelton, J. Chem. Phys., 2014, 141, 224506.CrossRefGoogle Scholar
  21. 21.
    M. H. Rausch, J. Lehmann, A. Leipertz, A. P. Froba, Phys. Chem. Chem. Phys., 2011, 13, 9525.CrossRefGoogle Scholar
  22. 22.
    A. V. Anikeenko, G. G. Malenkov, Yu. I. Naberukhin, J. Struct. Chem. (Engl. Transl.), 2016, 57, 1660.Google Scholar
  23. 23.
    A. V. Anikeenko, G. G. Malenkov, Yu. I. Naberukhin, Dokl. Phys. Chem. (Engl. Transl.), 2017, 472, 16.CrossRefGoogle Scholar
  24. 24.
    A. V. Anikeenko, G. G. Malenkov, Y. I. Naberukhin, J. Chem. Phys., 2018, 148, 094508; DOI: 10.1063/1.5018140.CrossRefGoogle Scholar
  25. 25.
    A. V. Orlova, D. E. Tsvetkov, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 1712.CrossRefGoogle Scholar
  26. 26.
    A. V. Orlova, T. V. Laptinskaya, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 2173.CrossRefGoogle Scholar
  27. 27.
    S. Krickl, T. Buchecker, A. U. Meyer, I. Grillo, D. Touraud, P. Bauduin, B. Konig, A. Pfitzner, W. Kunz, Phys. Chem. Chem. Phys., 2017, 19, 23773; DOI:10.1039/C7CP02134H.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. V. Lagodzinskaya
    • 1
    Email author
  • T. V. Laptinskaya
    • 2
  • A. I. Kazakov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  2. 2.Department of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations