Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2159–2163 | Cite as

Nonradiative energy transfer in mixed Langmuir monolayers and Langmuir–Blodgett films of compounds of different chemical composition and structure

  • I. I. Shepeleva
  • A. V. Shokurov
  • N. V. Konovalova
  • V. V. Arslanov
  • P. A. Panchenko
  • S. L. SelektorEmail author
Full Articles
  • 6 Downloads

Abstract

The efficiency of the Förster resonance energy transfer (FRET) in a monolayer film containing the energy donor and energy acceptor fluorophores is low since the energy transfer process occurs in one plane only. As the number of layers increases to five, the energy transfer efficiency increases due to the interlayer energy transfer occurring in three dimensions. Further increase in the number of layers (up to 10) causes no significant increase in the efficiency since in this case the total film thickness exceeds an optimum value for the FRET process.

Key words

nonradiative energy transfer Langmuir monolayers Langmuir–Blodgett films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem., Int. Ed. Engl., 2006, 45, 4562.CrossRefGoogle Scholar
  2. 2.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006, 954 pp.CrossRefGoogle Scholar
  3. 3.
    S. L. Selector, L. B. Bogdanova, A. V. Shokurov, P. A. Panchenko, O. A. Fedorova, V. V. Arslanov, Macroheterocycles, 2014, 7, 311.CrossRefGoogle Scholar
  4. 4.
    S. Alekseev, N. V. Tkachenko, A. V. Efimov, H. Lemmetyinen, Russ. J. Phys. Chem., 2010, 84, 1230.CrossRefGoogle Scholar
  5. 5.
    J. F. Lovell, M. W. Chan, Q. Qi, J. Chen, G. Zheng, J. Am. Chem. Soc., 2011, 133, 18580–18582.CrossRefGoogle Scholar
  6. 6.
    G. Zaragoza-Galán, M. Fowler, R. Rein, N. Solladié, J. Duhamel, J. Phys. Chem. C, 2014, 118, 8280–8294.CrossRefGoogle Scholar
  7. 7.
    S. Shah, Z. Gryczynski, R. Chib, R. Fudala, A. Baxi, J. Borejdo, A. Synak, I. Gryczynski, Methods and Applications in Fluorescence, 2016, 4, 1–9.Google Scholar
  8. 8.
    B. Pispisa, A. Palleschi, C. Mazzuca, L. Stella, A. Valeri, M. Venanzi, F. Formaggio, C. Toniolo, Q. B. Broxterman, J. Fluorescence, 2002, 12, 213–217.CrossRefGoogle Scholar
  9. 9.
    V. Z. Paschenko, N. V. Konovalova, A. L. Bagdashkin, V. V. Gorokhov, V. B. Tusov, V. I. Yuzhakov, Optics and Spectroscopy, 2012, 112, No. 4, 519.CrossRefGoogle Scholar
  10. 10.
    A. V. Shokurov, L. V. Nikolayeva, D. N. Novak, V. V. Arslanov, S. L. Selektor, Mendeleev Commun., 2017, 27, 366.CrossRefGoogle Scholar
  11. 11.
    S. D. Stuchebryukov, S. L. Selektor, D. A. Silantieva, A. V. Shokurov, Prot. Met. Phys. Chem. Surfaces, 2013, 49, 189.CrossRefGoogle Scholar
  12. 12.
    P. A. Panchenko, O. A. Fedorova, Y. V. Fedorov, Russ. Chem. Rev., 2014, 83, 155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. I. Shepeleva
    • 1
    • 2
  • A. V. Shokurov
    • 1
  • N. V. Konovalova
    • 2
  • V. V. Arslanov
    • 1
  • P. A. Panchenko
    • 3
  • S. L. Selektor
    • 1
    Email author
  1. 1.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Russian Technological University, M. V. Lomonosov Institute of Fine Chemical TechnologiesMoscowRussian Federation
  3. 3.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations