Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 2135–2140 | Cite as

Antioxidant properties of chitosan-(poly)nitroxides under induced oxidative stress

  • A. A. Balakina
  • V. A. Mumyatova
  • E. M. Pliss
  • A. A. Terent’ev
  • V. D. Sen’
Full Articles
  • 6 Downloads

Abstract

The cytotoxicity and antioxidant properties of water-soluble (at physiological pH) chitosan- (poly)nitroxides (CPNs) containing pyrroline-based nitroxide and having different molecular weights of the polysaccharide backbone were studied on normal (Vero) and tumor (HepG2) cell models. The compounds were found to exhibit low cytotoxicity and to effectively reduce the level of reactive oxygen species (ROS) generated upon the breakdown of tert-butyl hydroperoxide in normal cells. In tumor cells, the CPNs have little effect on the ROS level under the oxidative stress. The results show that CPNs also represent a promising platform for the development of cell delivery systems for biologically active compounds.

Key words

chitosan nitroxide radicals chitosan-(poly)nitroxides cytotoxicity oxidative stress reactive oxygen species malondialdehyde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Cunha, B. Teixeira, B. Santos, M. Almeida, G. Dias, J. das Neves, in Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, Eds B. Sar mento, J. das Neves, Wiley, Chichester, 2012, p. 75.Google Scholar
  2. 2.
    K. Azuma, T. Osaki, S. Minami, Y. Okamoto, J. Funct. Biomater., 2015, 6, 33.CrossRefGoogle Scholar
  3. 3.
    A.V. Il’ina, V. P. Varlamov, Appl. Biochem. Microbiol., 2016, 52, 1.CrossRefGoogle Scholar
  4. 4.
    Y.-K. Kim, H.-L. Jiang, D.-D. Guo, Y.-J. Choi, M.-H. Cho, T. Akaike, C.-H. Cho, in Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, Eds B. Sarmento, J. das Neves, Wiley, Chichester, 2012, p. 255.Google Scholar
  5. 5.
    A. S. Berezin, E. A. Lomkova, Yu. A. Skorik, Russ. Chem. Bull., 2012, 61, 781.CrossRefGoogle Scholar
  6. 6.
    A. S. Kritchenkov, S. Andranovitš, Yu. A. Skorik, Russ. Chem. Rev., 2017, 86, 231.CrossRefGoogle Scholar
  7. 7.
    S. Skalickova, M. Loffelmann, M. Gargulak, M. Kepinska, M. Docekalova, D. Uhlirova, M. Stankova, C. Fernandez, H. Milnerowicz, B. Ruttkay-Nedecky, R. Kizek, Nanomaterials, 2017, 7, 435.CrossRefGoogle Scholar
  8. 8.
    S. Oliver, O. Vittorio, G. Cirillo, C. Boyer, Polym. Chem., 2016, 7, 1529.CrossRefGoogle Scholar
  9. 9.
    A. V. Odinokov, D. Y. Dzhons, A. V. Budruev, A. E. Mochalova, L. A. Smirnova, Russ. Chem. Bull., 2016, 65, 1122.CrossRefGoogle Scholar
  10. 10.
    M. Lewandowski, K. Gwozdzinski, Int. J. Mol. Sci., 2017, 18, 2490.CrossRefGoogle Scholar
  11. 11.
    B. P. Soule, F. Hyodo, K. Matsumoto, N. L. Simone, J. A. Cook, M. C. Krishna, J. B. Mitchell, Free Radic. Biol. Med., 2007, 42, 1632.CrossRefGoogle Scholar
  12. 12.
    C. Prescott, S. E. Bottle, Cell Biochem. Biophys., 2017, 75, 227.aaaaaCrossRefGoogle Scholar
  13. 13.
    V. D. Sen’, A. A. Terent’ev, N. P. Konovalova, Russ. Chem. Bull., 2011, 60, 1342.CrossRefGoogle Scholar
  14. 14.
    K.-A. Hansen, J. P. Blinco, Polym. Chem., 2018, 9, 1479.CrossRefGoogle Scholar
  15. 15.
    T. Yoshitomi, Y. Nagasaki, Nanomedicine (London), 2011, 6, 509.CrossRefGoogle Scholar
  16. 16.
    Y. Nagasaki, Ther. Deliv., 2012, 3, 165.CrossRefGoogle Scholar
  17. 17.
    V. D. Sen’, E. M. Sokolova, N. I. Neshev, A. V. Kulikov, E. M. Pliss, React. Funct. Polym., 2017, 111, 53.CrossRefGoogle Scholar
  18. 18.
    E. G. Rozantsev, Svobodnye iminoksil’nye radikaly [Iminoxyl Free Radicals], Khimiya, Moscow, 1970, 216 pp. (in Russian).Google Scholar
  19. 19.
    X. Chen, Z. Zhong, Z. Xu, L. Chen, Y. Wang, Free Radic. Res., 2010, 44, 587CrossRefGoogle Scholar
  20. 20.
    T. Mosmann, J. Immunol. Methods, 1983, 65, 55.CrossRefGoogle Scholar
  21. 21.
    F. Denizot, R. Lang, J. Immunol. Methods, 1986, 89, 271.CrossRefGoogle Scholar
  22. 22.
    P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, D. C. Klenk, Anal. Biochem., 1985, 150, 76.CrossRefGoogle Scholar
  23. 23.
    J. Reichling, P. Schnitzler, U. Suschke, R. Saller, Forsch. Komplementmed., 2009, 16, 79.Google Scholar
  24. 24.
    M. Stefek, I. Milackova, M. Juskova-Karasova, V. Snirc, Redox Rep., 2013, 18, 71.CrossRefGoogle Scholar
  25. 25.
    H. Zhang, M. Yin, L. Huang, J. Wang, L. Gong, J. Liu, B. Sun, J. Food Sci., 2017, 82, 278.CrossRefGoogle Scholar
  26. 26.
    R. Cassano, S. Trombino, A. Cilea, T. Ferrarelli, R. Muzzalupo, N. Picci, Chem. Pharm. Bull. (Tokyo), 2010, 58, 103.CrossRefGoogle Scholar
  27. 27.
    P. Palozza, S. Verdecchia, L. Avanzi, S. Vertuani, S. Serini, A. Iannone, S. Manfredini, Mol. Cell. Biochem., 2006, 287, 21.CrossRefGoogle Scholar
  28. 28.
    T. Yamasaki, Y. Ito, F. Mito, K. Kitagawa, Y. Matsuoka, M. Yamato, K. Yamada, J. Org. Chem., 2011, 76, 4144.CrossRefGoogle Scholar
  29. 29.
    H. P. Fernandes, C. L. Cesar, M. de Lourdes Barjas-Castro, Rev. Bras. Hematol. Hemoter., 2011, 33, 297.CrossRefGoogle Scholar
  30. 30.
    O. V. Bondar, D. V. Saifullina, I. I. Shakhmaeva, I. I. Mavlyutova, T. I. Abdullin, Acta Naturae, 2012, 4, 78.Google Scholar
  31. 31.
    C. Qian, X. Xu, Y. Shen, Y. Li, S. Guo, Carbohydr. Polym., 2013, 97, 676.CrossRefGoogle Scholar
  32. 32.
    Z. G. Yue, W. Wei, P. P. Lv, H. Yue, L. Y. Wang, Z. G. Su, G. H. Ma, Biomacromolecules, 2011, 12, 2440.CrossRefGoogle Scholar
  33. 33.
    D. D. Rio, A. J. Stewart, N. Pellegrini, Nutr. Metab. Cardiovasc. Dis., 2005, 15, 316.CrossRefGoogle Scholar
  34. 34.
    Y. I. Chung, J. C. Kim, Y. H. Kim, G. Tae, S. Y. Lee, K. Kim, I. C. Kwon, J. Control. Release., 2010, 143, 374.CrossRefGoogle Scholar
  35. 35.
    S. Kulikov, P. Zelenikhin, R. Murtazina, R. Khayrullin, E. Bezrodnih, V. Tikhonov, BioNanoScience, 2016, 6, 460.CrossRefGoogle Scholar
  36. 36.
    T. Gomez-Sierra, D. Eugenio-Perez, A. Sanchez-Chin chillas, J. Pedraza-Chaverri, Food Chem. Toxicol., 2018, 120, 230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Balakina
    • 1
    • 2
    • 3
  • V. A. Mumyatova
    • 1
    • 2
    • 3
  • E. M. Pliss
    • 2
  • A. A. Terent’ev
    • 1
    • 2
    • 3
    • 4
  • V. D. Sen’
    • 1
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.P. G. Demidov Yaroslavl State UniversityYaroslavlRussian Federation
  3. 3.Research and Education Center “Medicinal Chemistry” in ChernogolovkaMoscow Region State UniversityMytishchi, Moscow RegionRussian Federation
  4. 4.Faculty of Fundamental Physical and Chemical EngineeringM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations