Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 2058–2064 | Cite as

Synthesis and structural features of 2-halo-2,2-dinitroacetamidoximes

  • A. E. Frumkin
  • A. A. Anisimov
  • A. B. SheremetevEmail author
Full Articles
  • 30 Downloads

Abstract

Nitro compounds in which the halodinitromethyl group is bonded to the formamidoxime or halohydroxyiminomethyl moiety were obtained for the first time and characterized. The structures of some amidoximes were studied by experimental (X-ray diffraction) and theoretical methods.

Key words

fluorodinitromethyl group chlorodinitromethyl group bromodinitromethyl group amidoxime hydroxamoyl halide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Eloy, R. Lenaers, Chem. Rev., 1962, 62, 155.CrossRefGoogle Scholar
  2. 2.
    I. A. Poplavskaya, R. G. Kurmangalieva, Khimiya amidoksimov [Chemistry of Amidoximes], Nauka, Alma-Ata, 1988, 144 pp. (in Russian).Google Scholar
  3. 3.
    D. Korbonits, K. Horvath, Heterocycles, 1994, 37, 2051.CrossRefGoogle Scholar
  4. 4.
    K. Hemming, in Comprehensive Heterocyclic Chemistry III, Eds A. Katritzky, C. Ramsden, E. Scriven, R. Taylir, Elsevier, 2008, 5, 234.Google Scholar
  5. 5.
    A. R. Katritzky, L. Huang, M. Chahar, R. Sakhuja, C. D. Hall, Chem. Rev., 2012, 112, 1633.CrossRefGoogle Scholar
  6. 6.
    A. Nikitjuka, A. Jirgensons, Chem. Heterocycl. Compd., 2013, 49, 1544.CrossRefGoogle Scholar
  7. 7.
    L. C. Bretanha, D. Venzke, P. T. Campos, A. Duarte, M. A. P. Martins, G. M. Sequeira, R. A. Freitag, Arkivoc, 2009, 12, 1.Google Scholar
  8. 8.
    H. C. Brown, C. R. Wetzel, J. Org. Chem., 1965, 30, 3734.CrossRefGoogle Scholar
  9. 9.
    G. A. Shvekhgeimer, V. A. Smirnyagina, R. A. Sadykov, S. S. Novikov, Russ. Chem. Rev., 1968, 37, 351.CrossRefGoogle Scholar
  10. 10.
    A. L. Fridman, V. D. Surkova, S. S. Novikov, Russ. Chem. Rev., 1980, 49, 1068.CrossRefGoogle Scholar
  11. 11.
    V. V. Bakharev, A. A. Gidaspov, E.V. Golovin, Russ. J. Gen. Chem., 2007, 77, 1426.CrossRefGoogle Scholar
  12. 12.
    A. A. Gidaspov, V. V. Bakharev, B. S. Fedorov, M. A. Fadeev, N. P. Konovalova, Russ. J. Appl. Chem., 2009, 82, 1816.CrossRefGoogle Scholar
  13. 13.
    O. A. Luk’yanov, V. V. Parakhin, Russ. Chem. Bull., 2012, 61, 1582.CrossRefGoogle Scholar
  14. 14.
    A. O. Dmitrienko, V. A. Karnoukhova, A. A. Potemkin, M. I. Struchkova, I. A. Kryazhevskikh, K. Yu. Suponitsky, Chem. Heterocycl. Compd., 2017, 53, 532.CrossRefGoogle Scholar
  15. 15.
    A. E. Frumkin, N. V. Yudin, K. Yu. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2018, 28, 135–137.CrossRefGoogle Scholar
  16. 16.
    L. V. Okhlobystina, V. M. Khutoretskii, A. A. Fainzilberg, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, 1387.Google Scholar
  17. 17.
    I. V. Tselinskii, A. A. Mel’nikov, L. G. Varyagina, A. E. Trubitsin, J. Org. Chem. USSR, 1985, 21, 2490.Google Scholar
  18. 18.
    I. V. Tselinskii, A. A. Mel’nikov, A. E. Trubitsin, J. Org. Chem. USSR, 1990, 26, 272.Google Scholar
  19. 19.
    O. A. Luk’yanov, G. V. Pokhvisneva, T. V. Ternikova, N. I. Shlykova, M. E. Shagaeva, Russ. Chem. Bull., 2011, 60, 1703.CrossRefGoogle Scholar
  20. 20.
    I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, K. Yu. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2015, 25, 429.CrossRefGoogle Scholar
  21. 21.
    L. C. Bretanha, R. A. Freitag, G. M. Siqueira, M. Ritter, P. T. Campos, M. A. P. Martins, J. Chem. Crystallogr., 2012, 42, 697.CrossRefGoogle Scholar
  22. 22.
    A. Gavezzotti, Acc. Chem. Res., 1994, 27, 309.CrossRefGoogle Scholar
  23. 23.
    K. Yu. Suponitsky, T. V. Timofeeva, M. Yu. Antipin, Russ. Chem. Rev., 2006, 75, 457.CrossRefGoogle Scholar
  24. 24.
    C. B. Aakeröy, J. Desper, M. Fasulo, I. Hussain, B. Levin, N. Schultheiss, CrystEngComm, 2008, 10, 1816.CrossRefGoogle Scholar
  25. 25.
    M. C. Etter, Acc. Chem. Res., 1990, 23, 120.CrossRefGoogle Scholar
  26. 26.
    M. C. Etter, J. Phys. Chem., 1991, 95, 4601.CrossRefGoogle Scholar
  27. 27.
    A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempertd, A. B. Sheremetev, RSC Adv., 2016, 6, 34921.CrossRefGoogle Scholar
  28. 28.
    I. L. Dalinger, A. V. Kormanov, I. A. Vatsadze, O. V. Serushkina, T. K. Shkineva, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, Chem. Heterocycl. Compd., 2016, 52, 1025.CrossRefGoogle Scholar
  29. 29.
    K. Yu. Suponitsky, N. I. Burakov, A. L. Kanibolotsky, V. A. Mikhailov, J. Phys. Chem. A., 2016, 120, 4179.CrossRefGoogle Scholar
  30. 30.
    M. S. Chernov’yants, T. S. Kolesnikova, K. Yu. Suponitsky, Russ. Chem Bull., 2016, 65, 811.CrossRefGoogle Scholar
  31. 31.
    A. B. Sheremetev, N. V. Palysaeva, M. I. Struchkova, K. Yu. Suponitsky, M. Yu. Antipin, Eur. J. Org. Chem., 2012, 2266.Google Scholar
  32. 32.
    N. V. Palysaeva, K. P. Kumpan, M. I. Struchkova, I. L. Dalinger, A. V. Kormanov, N. S. Aleksandrova, V. M. Chernyshev, D. F. Pyreu, K. Yu. Suponitsky, A. B. Sheremetev, Org. Lett., 2014, 16, 406.CrossRefGoogle Scholar
  33. 33.
    A. B. Sheremetev, V. L. Korolev, A. A. Potemkin, N. S. Aleksandrova, N. V. Palysaeva, T. H. Hoang, V. P. Sinditskii, K. Yu. Suponitsky, Asian J. Org. Chem., 2016, 5, 1388.CrossRefGoogle Scholar
  34. 34.
    A. B. Sheremetev, N. S. Aleksandrova, N. V. Palysaeva, M. I. Struchkova, V. A. Tartakovsky, K. Yu. Suponitsky, Chem. Eur. J., 2013, 19, 12446–12457.CrossRefGoogle Scholar
  35. 35.
    I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, N. V. Mu ra vyev, A. B. Sheremetev, Chem. Asian J., 2018, 13, 1165–1172.CrossRefGoogle Scholar
  36. 36.
    I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780–14786.CrossRefGoogle Scholar
  37. 37.
    I. L. Dalinger, O. V. Serushkina, N. V. Muravyev, D. B. Meerov, E. A. Miroshnichenko, T. S. Kon’kova, K. Yu. Suponitsky, M. V. Vener, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 18669.CrossRefGoogle Scholar
  38. 38.
    A. N. Vereshchagin, Induktivnyy effekt. Konstanty zamestiteley dlya korrelyatsionnogo analiza [Inductive Effect. Constants of Substituents for Correlation Analysis], Nauka, Moscow, 1987 (in Russian).Google Scholar
  39. 39.
    E. Nordmann, Chem. Ber., 1884, 17, 2746.CrossRefGoogle Scholar
  40. 40.
    M. Kocevar, L. Polans, M. Sollner, Synth. Commun., 1988, 18, 1427.CrossRefGoogle Scholar
  41. 41.
    V. G. Andrianov, A. Eremeev, Synth. Commun., 1992, 22, 453.CrossRefGoogle Scholar
  42. 42.
    V. N. Yarovenko, M. M. Krayushkin, O. V. Lysenko, L. M. Kustov, I. V. Zavarzin, Russ. Chem. Bull., 1994, 43, 402.CrossRefGoogle Scholar
  43. 43.
    V. G. Andrianov, A. V. Eremeev, Chem. Heterocycl. Compd., 1994, 30, 370.CrossRefGoogle Scholar
  44. 44.
    V. N. Yarovenko, S. A. Kosarev, I. V. Zavarzin, M. M. Krayush kin, Russ. Chem. Bull., 2002, 51, 1504.CrossRefGoogle Scholar
  45. 45.
    A. B. Sheremetev, V. G. Andrianov, E. V. Mantseva, E. V. Shatunova, N. S. Aleksandrova, V. O. Kulagina, T. M. Mel’nikova, I. L. Yudin, D. E. Dmitriev, B. B. Averkiev, M. Yu. Antipin, Russ. Chem. Bull., 2004, 53, 596–614.CrossRefGoogle Scholar
  46. 46.
    A. A. Dippold, D. Izsak, T. M. Klapotke, C. Pfluger, Chem. Eur. J., 2016, 22, 1768–1778.CrossRefGoogle Scholar
  47. 47.
    A. I. Stepanov, V. S. Sannikov, D. V. Dashko, A. G. Roslyakov, A. A. Astrat’ev, E. V. Stepanova, Chem. Heterocycl. Compd., 2017, 53, 746–759.CrossRefGoogle Scholar
  48. 48.
    P. F. Pagoria, M.-X. Zhang, N. B. Zuckerman, A. J. DeHope, D. A. Parrish, Chem. Heterocycl. Compd., 2017, 53, 760–778.CrossRefGoogle Scholar
  49. 49.
    O. A. Luk’yanov, N. I. Shlykova, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 2358.CrossRefGoogle Scholar
  50. 50.
    V. G. Andrianov, V. G. Semenikhina, A. V. Eremeev, Chem. Heterocycl. Compd., 1992, 28, 581.CrossRefGoogle Scholar
  51. 51.
    V. N. Yarovenko, O. V. Lysenko, M. M. Krayushkin, Chem. Heterocycl. Compd., 1993, 29, 452.CrossRefGoogle Scholar
  52. 52.
    I. V. Tselinskii, S. F. Mel’nikova, T. V. Romanova, Russ. J. Org. Chem., 2001, 37, 430.CrossRefGoogle Scholar
  53. 53.
    D. D. Dolliver, T. Sommerfeld, M. L. Lanier, J. A. Dinser, R. P. Rucker, R. J. Weber and A. S. McKim, J. Phys. Org. Chem., 2010, 23, 227–237.Google Scholar
  54. 54.
    D. Moderhack, Heterocycles, 2011, 83, 1435.CrossRefGoogle Scholar
  55. 55.
    V. A. Ostrovskii, E. A. Popova, R. E. Trifonov, Adv. Heterocycl. Chem., 2017, 123, 1.CrossRefGoogle Scholar
  56. 56.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, K. N. Kudin, Jr., J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, 2004.Google Scholar
  57. 57.
    J. Sponer, K. E. Riley, P. Hobza, Phys. Chem. Chem. Phys., 2008, 10, 2595.CrossRefGoogle Scholar
  58. 58.
    K. Y. Suponitsky, A. E. Masunov, M. Y. Antipin, Mendeleev Commun., 2009, 311.Google Scholar
  59. 59.
    A. B. Sheremetev, B. V. Lyalin, A. M. Kozeev, N. V. Palysaeva, M. I. Struchkova, K. Yu. Suponitsky, RSC Adv., 2015, 5, 37617–37625.CrossRefGoogle Scholar
  60. 60.
    R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.Google Scholar
  61. 61.
    T. A. Keith, 2014, AIMAll, Version 14.11.23. TK Gristmill Software, Overland Park KS, USA (http://aim.tkgristmill. com).Google Scholar
  62. 62.
    E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457.CrossRefGoogle Scholar
  63. 63.
    E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 170.Google Scholar
  64. 64.
    K. A. Lyssenko, Mendeleev Commun., 2012, 22, 1.CrossRefGoogle Scholar
  65. 65.
    K. Yu. Suponitsky, A. E. Masunov, M. Yu. Antipin, Men deleev. Commun., 2008, 18, 265.CrossRefGoogle Scholar
  66. 66.
    A. B. Sheremetev, N. S. Aleksandrova, K. Yu. Suponitsky, M. Yu. Antipin, V. A. Tartakovsky, Mendeleev. Commun., 2010, 20, 249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. E. Frumkin
    • 1
  • A. A. Anisimov
    • 2
    • 3
  • A. B. Sheremetev
    • 1
    Email author
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  3. 3.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussian Federation

Personalised recommendations