Russian Chemical Bulletin

, Volume 67, Issue 11, pp 1992–1996 | Cite as

Mixed systems based on the cationic surfactant with a butyl carbamate fragment and nonionic surfactant Tween 80: Aggregation behavior and solubilization properties

  • A. B. MirgorodskayaEmail author
  • R. A. Kushnazarova
  • A. Yu. Shcherbakov
  • S. S. Lukashenko
  • N. A. Zhukova
  • V. A. Mamedov
  • L. Ya. Zakharova
  • O. G. Sinyashin
Full Articles


Mixed micelles are formed in the binary compositions based on the cationic surfactant functionalized by the butyl carbamate fragment and nonionic surfactant Tween 80 in aqueous solutions. The aggregation parameters of the formed micelles (critical micelle concentration, size, and surface potential) depend on the component ratio in the system. The solubilization effect of individual and mixed micelles on the drugs of the heterocyclic series, indomethacin and 1-[5-(4-chlorophenyl)-3-phenylpyrrol-2-yl)]benzimidazol-2(3H)-one, was quantitatively characterized.

Key words

surfactants aggregation mixed micelles solubilization drugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. F. Tadros, Applied Surfactants: Principles and Application, Wiley-VCH, Weinheim, 2005, p. 634.CrossRefGoogle Scholar
  2. 2.
    D. Myers, Surfactant Science and Technology, John Wiley and Sons, Hoboken, New Jersey, 2006, p. 380.Google Scholar
  3. 3.
    K. R. Lange, Surfactants: A Practical Handbook, Hanser Publishers, Munich, 1999, 237 рp.Google Scholar
  4. 4.
    S. Matile, A. V. Jentzsch, J. Montenegro, A. Fin, Chem. Soc. Rev., 2011, 40, 2453.CrossRefGoogle Scholar
  5. 5.
    M. C. Jennings, K. P. C. Minbiole, W. M. Wuest, ACS Infect. Dis., 2016, 1, 288.CrossRefGoogle Scholar
  6. 6.
    M. Mehta, A. Adem, M. Sabbagh, Int. J. Alzheimers Dis., 2012, 728.Google Scholar
  7. 7.
    C. Holmes, D. Wilkinson, Adv. Psychiatr. Treat., 2000, 6, 193.CrossRefGoogle Scholar
  8. 8.
    A. B. Mirgorodskaya, S. S. Lukashenko, R. A. Kushnazarova, R. R. Kashapov, L. Ya. Zakharova, O. G. Sinyashin, Russ. J. Org. Chem., 2018, 54, 987.CrossRefGoogle Scholar
  9. 9.
    E. P. Zhiltsova, T. N. Pashirova, R. R. Kashapov, N. K. Gaisin, O. I. Gnezdilov, S. S. Lukashenko, A. D. Voloshina, N. V. Kulik, V. V. Zobov, L. Ya. Zakharova, A. I. Konovalov, Russ. Chem. Bull., 2012, 61, 113.CrossRefGoogle Scholar
  10. 10.
    V. A. Mamedov, RSC Adv., 2016, 6, 42132–42172.CrossRefGoogle Scholar
  11. 11.
    V. A. Mamedov, Quinoxalines. Synthesis, Reactions, Mechanisms and Structure, Springer, Switzerland, 2016, 397 pp.CrossRefGoogle Scholar
  12. 12.
    V. A. Mamedov, A. M. Murtazina, Russ. Chem. Rev., 2011, 80, 397.CrossRefGoogle Scholar
  13. 13.
    V. A. Mamedov, N. A. Zhukova, Progress in Heterocyclic Chem., Eds G. W. Gribble, J. A. Joule, Elsevier, Amsterdam, 2013, 1, 25.Google Scholar
  14. 14.
    V. A. Mamedov, N. A. Zhukova, T. N. Beschastnova, V. V. Syakaev, D. B. Krivolapov, E. V. Mironova, I. K. Rizvanov, S. K. Latypov, A. I. Zamaletdinova, J. Org. Chem., 2015, 80, 1375.CrossRefGoogle Scholar
  15. 15.
    E. I. Yackevich, A. B. Mirgorodskaya, L. Ya. Zakharova, O. G. Sinyashin, Russ. Chem. Bull., 2015, 64, 2232.CrossRefGoogle Scholar
  16. 16.
    A. B. Mirgorodskaya, L. Ya. Zakharova, E. I. Khairutdinova, S. S. Lukashenko, O. G. Sinyashin, Colloids Surf., A, 2016, 510, 33.CrossRefGoogle Scholar
  17. 17.
    N. O. Mchedlov-Petrosyan, Differentsirovanie sily organicheskikh kislot v istinnykh i organizovannykh rastvorakh [Differentiation of the Strength of Organic Acids in True and Organized Solutions], V. N. Karazin Kharkov National University, Kharkov, 2004, 326 pp. (in Russian).Google Scholar
  18. 18.
    А. B. Mirgorodskaya, L. A. Kudryavtseva, V. A. Pankratov, S. S. Lukashenko, L. Z. Rizvanova, A. I. Konovalov, Russ. J. Gen. Chem., 2006, 76, 1625.CrossRefGoogle Scholar
  19. 19.
    R. Liu, R.-M. Dannenfelser, S. Li, in Water-Insoluble Drug Formulation, Ed. R. Liu, CRC Press, Boca Rotan, Florida, 2008, p. 255.CrossRefGoogle Scholar
  20. 20.
    A. Chaudhary, U. Nagaich, N. Gulati, V. K. Sharma, R. L. Khosa, J. Adv. Pharm. Educ. Res., 2012, 2, 32.Google Scholar
  21. 21.
    R. Thipparaboina, R. B. Chavan, D. Kumar, S. Modugula, N. R. Shastri, Colloids Surf., B, 2015, 135, 291.CrossRefGoogle Scholar
  22. 22.
    R. Sharma, D. Nandni, R. K. Mahajan, Colloids Surf., A, 2014, 451, 107.CrossRefGoogle Scholar
  23. 23.
    S. K. Mehta, N. Jindal, Colloids Surf., B, 2013, 110, 419.CrossRefGoogle Scholar
  24. 24.
    H. Mu, R. Holm, A. Müllertz, Int. J. Pharmaceutics, 2013, 453, 215.CrossRefGoogle Scholar
  25. 25.
    J. Shokri, A. Nokhodchi, A. Dashbolaghi, D. Hassan-Zadeh, T. Ghafourian, M. B. Jalali, Int. J. Pharm., 2001, 228, 99.CrossRefGoogle Scholar
  26. 26.
    Ph. Daull, F. Lallemand, J. S. Garrigue, J. Pharm. Pharmacol., 2014, 66, 531.CrossRefGoogle Scholar
  27. 27.
    A. Nokhodchi, Y. Javadzadeh, M. R. Siahi-Shadbad, M. Barzegar-Jalali, J. Pharm. Pharm. Sci., 2005, 8, 18.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. B. Mirgorodskaya
    • 1
    Email author
  • R. A. Kushnazarova
    • 1
  • A. Yu. Shcherbakov
    • 1
  • S. S. Lukashenko
    • 1
  • N. A. Zhukova
    • 1
  • V. A. Mamedov
    • 1
    • 2
  • L. Ya. Zakharova
    • 1
    • 2
  • O. G. Sinyashin
    • 2
  1. 1.A. E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal Reseach Center “Kazan Scientific Center of the Russian Academy of Sciences,”KazanRussian Federation
  2. 2.Kazan National Research Technological UniversityKazanRussian Federation

Personalised recommendations