Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 1978–1984 | Cite as

Computational modeling of mixed-ligand cobalt complexes with o-quinone derivative of corannulene

  • А. А. StarikovaEmail author
  • A. G. Starikov
  • M. G. Chegerev
  • V. I. Minkin
Full Articles
  • 16 Downloads

Abstract

The structure and energy characteristics of isomers of electrically neutral adducts of tetracoordinate cobalt complexes with o-quinone derivative of corannulene were studied quantum chemically within the density functional theory (DFT) in the UB3LYP*/6-311++G(d,p) approximation. It was shown that the framework rigidity of the redox-active ligand favors convergence of the energy levels of the high-spin and low-spin isomers of the complexes under study as compared to the o-benzoquinone-containing analogues. At the same time, steric strain in the corannulene moiety causes the stability of the adducts to reduce. A compound characterized by high stabilization energy and the ability to switch its spin states via valence tautomeric rearrangements was found by systematic variation of structural parameters of cobalt bis(chelate).

Key words

valence tautomerism cobalt bischelates corannulene o-quinone quantum chemical calculations density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Buchanan, C. G. Pierpont, J. Am. Chem. Soc., 1980, 102, 4951.CrossRefGoogle Scholar
  2. 2.
    Magnetism: Molecules to Materials II, Eds J. S. Miller, M. Drillon, Wiley, New York, 2001, 489 pp.Google Scholar
  3. 3.
    V. I. Minkin, Russ. Chem. Bull., 2008, 57, 687.CrossRefGoogle Scholar
  4. 4.
    Spin-Crossover Materials: Properties and Applications, Ed. M. A. Halcrow, John Wiley & Sons, Chichester, 2013, 564 pp.Google Scholar
  5. 5.
    E. Evangelio, D. Ruiz-Molina, C. R. Chim., 2008, 11, 1137.CrossRefGoogle Scholar
  6. 6.
    T. Tezgerevska, K. G. Alley, C. Boskovic, Coord. Chem. Rev., 2014, 268, 23.CrossRefGoogle Scholar
  7. 7.
    V. I. Minkin, A. G. Starikov, Russ. Chem. Bull., 2015, 64, 475.CrossRefGoogle Scholar
  8. 8.
    D. Kiriya, H.-C. Chang, S. Kitagawa, J. Am. Chem. Soc., 2008, 130, 5515.CrossRefGoogle Scholar
  9. 9.
    M. P. Bubnov, N. A. Skorodumova, A. V. Arapova, N. N. Smirnova, M. A. Samsonov, G. K. Fukin, V. K. Cherkasov, G. A. Abakumov, Inorg. Chem., 2015, 54, 7767.CrossRefGoogle Scholar
  10. 10.
    A. Bencinia, A. Caneschia, C. Carbonera, A. Dei, D. Gatteschi, R. Righini, C. Sangregorio, J. Van Slageren, J. Mol. Struct., 2003, 656, 141.CrossRefGoogle Scholar
  11. 11.
    A. Dei, A. Feis, G. Poneti, L. Sorace, Inorg. Chim. Acta, 2008, 361, 3842.CrossRefGoogle Scholar
  12. 12.
    P. Dapporto, A. Dei, G. Poneti, L. Sorace, Chem.–Eur. J., 2008, 14, 10915.CrossRefGoogle Scholar
  13. 13.
    K. Katayama, M. Hirotsu, I. Kinoshita, Y. Teki, Dalton Trans., 2014, 43, 13384.CrossRefGoogle Scholar
  14. 14.
    E. P. Ivakhnenko, Yu. V. Koshchienko, P. A. Knyazev, M. S. Korobov, A. V. Chernyshev, K. A. Lyssenko, V. I. Minkin, Dokl. Chem. (Engl. Transl.), 2011, 438, 155.Google Scholar
  15. 15.
    C. Floriani, G. Fachinetti, F. Calderazzo, J. Chem. Soc., Dalton Trans., 1973, 765.Google Scholar
  16. 16.
    S. G. Kukes, A. I. Prokof’ev, A. S. Masalimov, N. N. Bubnov, S. P. Solodovnikov, M. I. Kabachnik, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1978, 27, 1327.CrossRefGoogle Scholar
  17. 17.
    F. Hartl, A. Vlček, Jr., Inorg. Chim. Acta, 1986, 118, 57.CrossRefGoogle Scholar
  18. 18.
    M. Yu. Antipin, E. P. Ivakhnenko, Yu. V. Koshchienko, P. A. Knyazev, M. S. Korobov, A. V. Chernyshev, K. A. Lyssenko, A. G. Starikov, V. I. Minkin, Russ. Chem. Bull., 2013, 62, 1744.CrossRefGoogle Scholar
  19. 19.
    E. P. Ivakhnenko, Y. V. Koshchienko, P. A. Knyazev, V. I. Minkin, V. B. Nalbandyan, K. A. Lyssenko, I. V. Ananyev, A. S. Bogomyakov, Russ. J. Coord. Chem., 2016, 42, 252.CrossRefGoogle Scholar
  20. 20.
    A. G. Starikov, R. M. Minyaev, A. A. Starikova, V. I. Minkin, Dokl. Chem. (Engl. Transl.), 2011, 440, 289.Google Scholar
  21. 21.
    V. I. Minkin, A. A. Starikova, R. M. Minyaev, Dalton Trans., 2013, 42, 1726.CrossRefGoogle Scholar
  22. 22.
    A. A. Starikova, R. M. Minyaev, V. I. Minkin, Russ. Chem. Bull., 2014, 63, 812.CrossRefGoogle Scholar
  23. 23.
    A. A. Starikova, V. I. Minkin, A. G. Starikov, Mendeleev Commun., 2014, 24, 329.CrossRefGoogle Scholar
  24. 24.
    A. A. Starikova, V. I. Minkin, Mendeleev Commun., 2015, 25, 83.CrossRefGoogle Scholar
  25. 25.
    A. G. Starikov, A. A. Starikova, V. I. Minkin, Russ. J. Gen. Chem., 2016, 86, 859.CrossRefGoogle Scholar
  26. 26.
    A. A. Starikova, A. G. Starikov, V. I. Minkin, Comput. Theor. Chem., 2016, 1076, 74.CrossRefGoogle Scholar
  27. 27.
    A. G. Starikov, A. A. Starikova, V. I. Minkin, Russ. J. Gen. Chem., 2017, 87, 98.CrossRefGoogle Scholar
  28. 28.
    V. I. Minkin, А. А. Starikova, A. G. Starikov, Russ. Chem. Bull. , 2017, 66, 208.CrossRefGoogle Scholar
  29. 29.
    А. G. Starikov, A. A. Starikova, V. I. Minkin, Dokl. Chem. (Engl. Transl.), 2017, 476, 215.Google Scholar
  30. 30.
    A. G. Starikov, A. A. Tsaturyan, А. А. Starikova, E. A. Gusakov, V. I. Minkin, Russ. Chem. Bull., 2018, 67, 1182.CrossRefGoogle Scholar
  31. 31.
    T. Bally, Nat. Chem., 2010, 2, 165.CrossRefGoogle Scholar
  32. 32.
    R. E. Barth, R. G. Lawton, J. Am. Chem. Soc. 1966, 88, 380.CrossRefGoogle Scholar
  33. 33.
    Y.-T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843.CrossRefGoogle Scholar
  34. 34.
    A. Sygula, Eur. J. Inorg. Chem., 2011, 1611.Google Scholar
  35. 35.
    A. M. Rice, E. A. Dolgopolova, N. B. Shustova, Chem. Mater., 2017, 29, 7054.CrossRefGoogle Scholar
  36. 36.
    A. Ueda, K. Ogasawara, S. Nishida, T. Ise, T. Yoshino, S. Nakazawa, K. Sato, T. Takui, K. Nakasuji, Y. Morita, Angew. Chem., Int. Ed., 2010, 49, 6333.CrossRefGoogle Scholar
  37. 37.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision E.01), Gaussian, Inc., Wallingford CT, 2013.Google Scholar
  38. 38.
    M. Reiher, O. Salomon, B. A. Hess, Theor. Chem. Acc., 2001, 107, 48.CrossRefGoogle Scholar
  39. 39.
    Chemcraft, version 1.7, 2013; http://www.chemcraftprog.com.Google Scholar
  40. 40.
    A. Caneschi, A. Cornia, A. Dei, Inorg. Chem., 1998, 37, 3419.CrossRefGoogle Scholar
  41. 41.
    A. Dei, L. Sorace, Appl. Magn. Reson., 2010, 38, 139.CrossRefGoogle Scholar
  42. 42.
    M. P. Bubnov, N. A. Skorodumova, A. S. Bogomyakov, G. V. Romanenko, A. V. Arapova, K. A. Kozhanov, N. N. Smirnova, G. A. Abakumov, V. K. Cherkasov, Russ. Chem. Bull., 2011, 60, 449.CrossRefGoogle Scholar
  43. 43.
    V. I. Minkin, A. G. Starikov, A. A. Starikova, Pure Appl. Chem., 2018, 90, 811.CrossRefGoogle Scholar
  44. 44.
    V. I. Minkin, L. E. Nivorozhkin, M. S. Korobov, Russ. Chem. Rev., 1994, 63, 289.CrossRefGoogle Scholar
  45. 45.
    V. I. Minkin, А. А. Starikova, A. G. Starikov, Russ. Chem. Bull., 2017, 66, 1543.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • А. А. Starikova
    • 1
    Email author
  • A. G. Starikov
    • 1
  • M. G. Chegerev
    • 1
  • V. I. Minkin
    • 1
  1. 1.Institute of Physical and Organic Chemistry at Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations