Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1838–1850 | Cite as

Supramolecular structuring of aqueous solutions of strong acids: manifestations in light scattering, NMR, and oxidation kinetics. Does liquid have a drop-like nature? 1. Nitric acid

  • G. V. Lagodzinskaya
  • T. V. Laptinskaya
  • A. I. Kazakov
Article
  • 8 Downloads

Abstract

The properties of large (~100 nm), supramolecular assemblies in aqueous solutions of nitric acid were studied by light scattering methods. The dependence of structural characteristics on the solution composition, stability in time, and effects of temperature and mechanical impacts were determined. The previously obtained data on the structure of the reaction medium and kinetics of acetone oxidation in aqueous solutions of nitric acid were used in the discussion. The identified trends and features confirm the role of supramolecular structuring in the kinetic anomalies involved in acetone oxidation.

Key words

aqueous solutions nitric acid supramolecular structure of the liquid reaction medium dynamic and static light scattering NMR spectroscopy kinetics mechanism oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Cainelli, P. Galletti, D. Giacomini, Chem. Soc. Rev., 2009, 38,990.CrossRefGoogle Scholar
  2. 2.
    L. O. Kononov, RSC Adv., 2015, 5, 46718.CrossRefGoogle Scholar
  3. 3.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4329.CrossRefGoogle Scholar
  4. 4.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4339.CrossRefGoogle Scholar
  5. 5.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 13976.CrossRefGoogle Scholar
  6. 6.
    K. R. Leopold, Annu. Rev. Phys. Chem., 2011, 62,327.CrossRefGoogle Scholar
  7. 7.
    F. Weinhold, J. Mol. Struct. (Theochem), 1997, 398–399,181.CrossRefGoogle Scholar
  8. 8.
    G. R. Chuev, M. V. Basilevsky, Russ. Chem. Rev., 2003, 72,735.CrossRefGoogle Scholar
  9. 9.
    S. Krickl, T. Buchecker, A. U. Meyer, I. Grillo, D. Touraud, P. Bauduin, B. Konig, A. Pfitzner, W. Kunz, Phys. Chem. Chem. Phys., 2017, 19, 23773; DOI: 10.1039/C7CP02134H.CrossRefGoogle Scholar
  10. 10.
    A. V. Orlova, T. V. Laptinskaya, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 2173.CrossRefGoogle Scholar
  11. 11.
    G. Cainelli, P. Galletti, D. Giacomini, P. Orioli, Angew Chem., Int. Ed. Engl., 2000, 39,523.CrossRefGoogle Scholar
  12. 12.
    G. B. Manelis, G. V. Lagodzinskaya, A. I. Kazakov, A. V. Chernyak, N. G. Yunda, L. S. Kurochkina, Russ. Chem. Bull., 2013, 62, 994; DOI: 10.1007/s11172-013-0130-1.CrossRefGoogle Scholar
  13. 13.
    G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, L. S. Kurochkina, G. B. Manelis, Russ. Chem. Bull., 2016, 65, 984; DOI: 10.1007/s11172-016-1401-4.CrossRefGoogle Scholar
  14. 14.
    G. V. Lagodzinskaya, N. G. Yunda, G. B. Manelis, Russ. Chem. Bull., 2006, 55,597.CrossRefGoogle Scholar
  15. 15.
    Dynamic Light Scattering. The Method and Some Applications, Ed. W. Brown, Clarendon Press, Oxford, 1993, 752 pp.Google Scholar
  16. 16.
    E. Jakeman, Photon Correlation and Light Beating Spectroscopy, Eds H. Z. Cummins, E. R. Pike, Plenum Press, New York–London, 1974, p.75.Google Scholar
  17. 17.
    S. W. Provencher, Comput. Phys. Commun., 1982, 27,229.CrossRefGoogle Scholar
  18. 18.
    P.-G. De Gennes, Scaling Concepts in Polymer Physics, 5th ed., Cornell University Press, Ithaca, 1996.Google Scholar
  19. 19.
    D. N. Klyshko, Photons Nonlinear Optics, CRC Press, 1988, 438 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. V. Lagodzinskaya
    • 1
  • T. V. Laptinskaya
    • 2
  • A. I. Kazakov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Department of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations