Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1747–1758 | Cite as

Liquid-phase oxidation of cyclohexane. Elementary steps in the developed process, reactivity, catalysis, and problems of conversion and selectivity

  • A. L. Perkel
  • S. G. Voronina
  • G. G. Borkina
Reviews
  • 3 Downloads

Abstract

The literature data concerning features of the kinetics and mechanisms of elementary steps of liquid-phase oxidation of cyclohexane and its oxygen derivatives are considered and analyzed. A comparison of rates of intermolecular and intramolecular reactions of cyclohexylperoxyl radicals under the industrial conditions indicated a necessity to take into account intramolecular interactions. The occurrence of cross recombination of hydroperoxyl and α-hydroxyperoxyl radicals without chain termination in the course of cyclohexanol and 2-hydroxycyclohexanol oxidation was proved. A significance of degenerate branching reactions involving cyclohexyl hydroperoxide in the industrial process of cyclohexane oxidation at 423 K was evaluated. The influence of the electron-withdrawing functional groups on the reactivity of carbon–hydrogen bonds of organic compounds in the reactions with electrophilic peroxyl radicals was studied. The low conversion of a substrate in the industrial process are mainly caused by the radicalchain oxidation of cyclohexanone leading only to by-products. The catalysts of cyclohexane oxidation, viz., compounds of variable valence metals, affect the reaction rate and ratio of the yields of the target products (cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone) but exert no effect on their relative reactivity. The use of the catalytic additives increasing the yield of cyclohexanone in the step of cyclohexane oxidation in the production of caprolactam is revealed to be inexpedient.

Key words

cyclohexane cyclohexyl hydroperoxide cyclohexanol cyclohexanone liquid-phase oxidation elementary steps kinetics mechanism reactivity catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Berezin, E. T. Denisov, N. M. Emanuel, The Oxidation of Cyclohexane, Elsevier, Oxford–London–Edinburgh–New York–Ontario, 1966, 304 pp.Google Scholar
  2. 2.
    R. A. Sheldon, G. Franz, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012, 25, p.543.Google Scholar
  3. 3.
    E. T. Denisov, N. I. Mitskevich, V. E. Agabekov, Liquid-Phase Oxidation of Oxygen-Containing Compounds, Consultants Bureau, New York, 1977, 355 pp.CrossRefGoogle Scholar
  4. 4.
    N. M. Emanuel, G. E. Zaikov, Z. K. Maizus, Oxidation of Organic Compounds: Medium Effects in Radical Reactions, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 2013, 628 pp.Google Scholar
  5. 5.
    E. T. Denisov, I. B. Afanas´ev, Oxidation and Antioxidants in Organic Chemistry and Biology, Taylor and Francis Group, Boca Raton–London–New York–Singapore, 2005, 981 pp.CrossRefGoogle Scholar
  6. 6.
    A. L. Perkel, S. G. Voronina, B. G. Freidin, Russ. Chem. Rev., 1994, 63,751.CrossRefGoogle Scholar
  7. 7.
    A. L. Perkel, S. G. Voronina, E. I. Buneeva, in Peroxides at the Beginning of the Third Millennium. Synthesis, Properties, Application, Eds V. L. Antonovsky, O. T. Kasaikina, G. E. Zaikov, Nova Science Publishers, New York, 2004, p.201.Google Scholar
  8. 8.
    A. L. Perkel, S. G. Voronina, G. G. Borkina, Russ. Chem. Bull., 2018, 67,779.CrossRefGoogle Scholar
  9. 9.
    A. L. Perkel, S. G. Voronina, Russ. Chem. Bull., 2018, 67, 1321.CrossRefGoogle Scholar
  10. 10.
    M. Conte, X. Liu, D. M. Murphy, S. H. Taylor, K. Whiston, G. J. Hutchingsa, Catal. Lett., 2016, 146,126.CrossRefGoogle Scholar
  11. 11.
    T. Wang, Y. She, H. Fu, H. Li, Catal. Today, 2016, 264,185.CrossRefGoogle Scholar
  12. 12.
    D. Yang, T. Wu, C. Chen, W. Guo, H. Liu, B. Han, Green Chem., 2017, 19, 311; doi: 10.1039/C6GC02748B.CrossRefGoogle Scholar
  13. 13.
    Y. Xiao, J. Liu, K. Xie, W. Wang, Y. Fang, Mol. Catal., 2017, 431, 1; doi: org/10.1016/j.mcat.2017.01.020.CrossRefGoogle Scholar
  14. 14.
    A. A. Alshaheri, M. I. M. Tahir, M. B. A. Rahman, Th. B. S. A. Ravoof, T. A. Saleh, Chem. Eng. J., 2017, 327,423.CrossRefGoogle Scholar
  15. 15.
    S. V. Puchkov, A. L. Perkel, E. I. Buneeva, Kinet. Catal., 2001, 42,751.CrossRefGoogle Scholar
  16. 16.
    S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Russ. J. Appl. Chem., 2002, 75,248.CrossRefGoogle Scholar
  17. 17.
    S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Kinet. Catal., 2002, 43,756.CrossRefGoogle Scholar
  18. 18.
    S. V. Puchkov, Yu. V. Nepomnyashchikh, E. S. Kozlova, A. L. Perkel, Kinet. Catal., 2013, 54,139.CrossRefGoogle Scholar
  19. 19.
    B. Sirjean, P. A. Glaude, M. F. Ruiz-Lopez, R. Fournet, J. Phys. Chem. A., 2009, 113, 6924; doi: 10.1021/jp901492e.CrossRefGoogle Scholar
  20. 20.
    Z. Serinyel, O. Herbinet, O. Frottier, P. Dirrenberger, V. Warth, P.-A. Glaude, F. Battin-Leclerc, Combustion and Flame, 2013, 160, 2319; doi: org/10.1016/j.combustflame. 2013.05.016.CrossRefGoogle Scholar
  21. 21.
    F. Buda, B. Heyberger, R. Fournet, P.-A. Glaude, V. Warth, F. Battin-Leclerc, Energy and Fuels, 2006, 20, 1450; doi: 10.1021/ef060090e.CrossRefGoogle Scholar
  22. 22.
    S. V. Puchkov, E. G. Moskvitina, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2012, 53,287.CrossRefGoogle Scholar
  23. 23.
    A. A. Akimov, S. V. Puchkov, Yu. V. Nepomnyashchikh, A. L. Perkel, Kinet. Catal., 2013, 54,270.CrossRefGoogle Scholar
  24. 24.
    S. V. Puchkov, E. G. Moskvitina, Yu. V. Nepomnyashchikh, A. L. Perkel, Russ. J. Phys. Chem., 2013, 87,737.CrossRefGoogle Scholar
  25. 25.
    E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2013, 54,538.CrossRefGoogle Scholar
  26. 26.
    E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2014, 55,22.CrossRefGoogle Scholar
  27. 27.
    I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peeters, ChemPhysChem., 2005, 6,637.CrossRefGoogle Scholar
  28. 28.
    I. Hermans, P. A. Jacobs, J. Peeters, Chem. A Eur. J., 2006, 12, 4229.CrossRefGoogle Scholar
  29. 29.
    I. Hermans, P. Jacobs, J. Peeters, Chem. A Eur. J., 2007, 13,754.CrossRefGoogle Scholar
  30. 30.
    I. Hermans, J. Peeters, P. A. Jacobs, J. Phys. Chem. A, 2008, 112, 1747.CrossRefGoogle Scholar
  31. 31.
    Yu. V. Nepomnyashchikh, I. M. Nosacheva, A. L. Perkel, Kinet. Catal., 2004, 45,768.CrossRefGoogle Scholar
  32. 32.
    I. M. Nosacheva, S. G. Voronina, A. L. Perkel, Kinet. Catal., 2004, 45,762.CrossRefGoogle Scholar
  33. 33.
    S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Kinet. Catal., 2005, 46,340.CrossRefGoogle Scholar
  34. 34.
    T. S. Kotel´nikova, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2006, 79,416.CrossRefGoogle Scholar
  35. 35.
    M. T. Lisovska, V. I. Timokhin, A. P. Pokutsa, V. I. Kopylets, Kinet. Catal., 2000, 41,201.CrossRefGoogle Scholar
  36. 36.
    E. A. Martynenko, I. L. Glazko, S. V. Levanova, Russ. Chem. Bull., 2016, 65, 2513; doi: 10.1007/s11172-016-1616-4.CrossRefGoogle Scholar
  37. 37.
    E. T. Denisov, T. G. Denisova, Russ. Chem. Rev., 2002, 71,417.CrossRefGoogle Scholar
  38. 38.
    A. Miyoshi, J. Phys. Chem. A, 2011, 115, 3301; doi: 10.1021/jp112152n.CrossRefGoogle Scholar
  39. 39.
    E. T. Denisov, Russ. Chem. Bull., 2013, 62, 1533.CrossRefGoogle Scholar
  40. 40.
    J. Pfaendtner, X. Yu, L. J. Broadbelt, J. Phys. Chem. A, 2006, 110, 10863; doi: 10.1021/jp061649e.CrossRefGoogle Scholar
  41. 41.
    S. L. Khursan, Organic Tetroxides and Mechanism of Peroxy Radical Recombination, Willy, Chichester, 2014; doi: 10.1002/9780470682531.pat0827.CrossRefGoogle Scholar
  42. 42.
    S. L. Khursan, V. S. Martem´yanov, E. T. Denisov, Kinet. Catal., 1990, 31,899.Google Scholar
  43. 43.
    Yu. V. Nepomnyashchikh, S. V. Puchkov, O. V. Abdulova, A. L. Perkel, Kinet. Catal., 2009, 50,609.CrossRefGoogle Scholar
  44. 44.
    Q. Zhao, F. Liu, W. Wang, Ch. Li, J. Lü, W. Wang, Phys. Chem. Chem. Phys., 2017, 19, 15073; doi: 10.1039/C7CP00869D.CrossRefGoogle Scholar
  45. 45.
    B. Long, X. F. Tan, J. L. Bao, D.-M. Wang, Zh.-W. Long, Int. J. Chem. Kinet., 2017, 49, 130; doi: org/10.1002/kin.21062.CrossRefGoogle Scholar
  46. 46.
    F. A. F. Winiberg, T. J. Dillon, S. C. Orr, Ch. B. V. Groβ, I. Bejan, Ch. A. Brumby, M. J. Evans, Sh. C. Smith, D. E. Heard, P. W. Seakins, Atmospheric Chemistry and Physics, 2016, 16, 4023; doi: 10.5194/acp-16-4023-2016.CrossRefGoogle Scholar
  47. 47.
    A. L. Perkel, G. M. Bogomolnyi, R. V. Neginskaya, B. G. Freidin, J. Appl. Chem. USSR, 1987, 60, 1493.Google Scholar
  48. 48.
    B. G. Freidin, A. L. Perkel, J. Appl. Chem. USSR, 1980, 53, 1257.Google Scholar
  49. 49.
    V. V. Lipes, Author´s Abstract, Doct. Sci. (Chem.) Thesis, Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka, 1987, 35 pp. (in Russian).Google Scholar
  50. 50.
    T. V. Kharkova, I. L. Arest-Yakubovich, V. V. Lipes, F. A. Geberger, Kinet. Catal., 1989, 30,954.Google Scholar
  51. 51.
    Landolt-Bórnstein. Numerical Data and Functional Relationships in Science and Technology. New Series, Ed. H. Fischer, Group II: Atomic and Molecular Physics, V. 13, Radical Reaction Rates in Liquids, Springer-Verlag, Berlin, 1984, 431 pp.Google Scholar
  52. 52.
    Landolt-Bórnstein. Numerical Data and Functional Relationships in Science and Technology. New Series, Ed. H. Fischer, Group II: Molecules and Radicals, V. 18, Radical Reaction Rates in Liquids, Springer-Verlag, Berlin, 1997, 434 pp.Google Scholar
  53. 53.
    R. V. Kucher, V. I. Timokhin, N. A. Kravchuk, Dokl. Chem., 1987, 294, 1411.Google Scholar
  54. 54.
    Yu. V. Nepomnyashchikh, S. V. Puchkov, O. V. Arnatskaya, E. G. Moskvitina, I. M. Borisov, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2011, No. 4–1, 48 (in Russian).Google Scholar
  55. 55.
    D. G. Hendry, C. W. Gould, D. Schuetzle, M. G. Syz, F. R. Mayo, J. Org. Chem., 1976, 41,1.CrossRefGoogle Scholar
  56. 56.
    T. S. Kotel´nikova, S. G. Voronina, S. V. Puchkov, A. L. Perkel, Vestn. KuzGTU [Bulletin of Kuzbass State Technical University], 2013, 5, 4 (in Russian).Google Scholar
  57. 57.
    L. A. Tavadyan, V. A. Mardoyan, M. V. Musaelyan, Int. J. Chem. Kinet., 1996, 28,555.CrossRefGoogle Scholar
  58. 58.
    S. V. Puchkov, Yu. V. Nepomnyashchikh, E. S. Kozlova, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2013, No. 1, 190 (in Russian).Google Scholar
  59. 59.
    A. A. Akimov, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2009, No. 3, 63 (in Russian).Google Scholar
  60. 60.
    G. G. Borkina, Yu. V. Nepomnyashchikh, A. L. Perkel, Vestn. KuzGTU [Bulletin of Kuzbass State Technical University], 2012, 6, 89 (in Russian).Google Scholar
  61. 61.
    A. L. Perkel, S. G. Voronina, Russ. J. Appl. Chem., 1999, 72, 1487.Google Scholar
  62. 62.
    L. I. Matienko, L. A. Mosolova, G. E. Zaikov, Russ. Chem. Rev., 2009, 78,211.CrossRefGoogle Scholar
  63. 63.
    Author´s Certificate 639855 USSR; Byul. Izobret. [Invention Bulletin], 1978, 48 (in Russian).Google Scholar
  64. 64.
    B. G. Freidin, A. L. Perkel, J. Appl. Chem. USSR, 1981, 54, 2418.Google Scholar
  65. 65.
    T. S. Kotel´nikova, O. A. Revkov, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2009, 82,287.CrossRefGoogle Scholar
  66. 66.
    T. S. Kotel´nikova, O. A. Revkov, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2009, 82,466.CrossRefGoogle Scholar
  67. 67.
    A. L. Perkel, B. G. Freidin, O. V. Borodina, J. Appl. Chem. USSR, 1985, 58, 2483.Google Scholar
  68. 68.
    E. A. Kurganova, V. N. Sapunov, G. N. Koshel, A. S. Frolov, Russ. Chem. Bull., 2016, 65, 2115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. L. Perkel
    • 1
  • S. G. Voronina
    • 1
  • G. G. Borkina
    • 1
  1. 1.Kuzbass State Technical University named after T. F. GorbachevInstitute of Chemical and Oil-Gas TechnologiesKemerovoRussian Federation

Personalised recommendations