Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 726–730 | Cite as

Pro- and antioxidant characteristics of natural thiols

  • K. M. Zinatullina
  • O. T. Kasaikina
  • V. A. Kuzmin
  • N. P. Khrameeva
Full Article
  • 16 Downloads

Abstract

In aqueous solutions at physiological temperature, the mechanism of antioxidative action of natural thiols (glutathione, cysteine, and homocysteine) mainly involves reactions with reactive oxygen species (ROS), peroxyl radicals and hydrogen peroxide. Reduction of hydrogen peroxide by thiols is accompanied by radical generation. The kinetic characteristics of these processes, including those for the reactions of hydrogen peroxide and glutathione immobilized on solid supports such as sodium montmorillonite (clay) and cellulose were determined. Prooxidative effects of thiols are related with the reactions of thiyl radicals formed in the exchange reactions of thiols with other radicals and in the reactions between thiols and hydroperoxides. Thiyl radicals are known to react easily with double bonds. Resveratrol and caffeic acid, phenolic antioxidants containing double bond in their molecules, were shown to be consumed when reacted with glutathione and the process accelerated in the presence of hydrogen peroxide.

Key words

radical generation glutathione cysteine antioxidants resveratrol caffeic acid hydrogen peroxide immobilization of glutathione cellulose thiol–ene reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sies, in Oxidative Stress, Ed. H. Sies, Academic Press, London, 1985, 507 pp.Google Scholar
  2. 2.
    H. Sies, D. P. Jones, in Encyclopedia of Stress, Ed. G. Fink, Vol. 3, Elsevier, San Diego, 2007, p.45.Google Scholar
  3. 3.
    S. Reuter, S. C. Gupta, M. M. Chaturvedi, B. B. Aggarwal, Free Radic. Biol. Med., 2010, 49, 1603.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O. I. Aruoma, J. Am. Oil Chem. Soc., 1998, 75,199.CrossRefGoogle Scholar
  5. 5.
    W. Sajevicz, M. Zalewska, H. Milnerowicz, Toxicol. in Vitro, 2015, 29,149.Google Scholar
  6. 6.
    B. G. Hill, A. Bhatnagar, IUBMB Life, 2007, 59,21.CrossRefPubMedGoogle Scholar
  7. 7.
    B. G. Harbrecht, M. Di Silvio, V. Chough, Y. M. Kim, R. L. Simmons, T. R. Billiar, Ann. Surg., 1997, 225,76.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Y. Wang, M. Qiao, J. J. Mieyal, L. M. Asmis, R. Asmis, Free Rad. Biol. Med., 2006, 41,775.CrossRefPubMedGoogle Scholar
  9. 9.
    C. S. Sevier, C. A. Kaiser, Nat. Rev. Mol. Cell Biol., 2002, 3,836.CrossRefPubMedGoogle Scholar
  10. 10.
    A. C. Burtis, E. R. Ashwood, W. B. Saunders, Tietz Fundament als of Clinical Chemistry, Elsevier, Philadelphia, 1996.Google Scholar
  11. 11.
    P. White, S. Threlfell, G. Hignett, A. Wain, N. Lawrence, J. Davis, R. Compton, Analyst, 2002, 127,797.CrossRefPubMedGoogle Scholar
  12. 12.
    H. Refsum, A. Smith, P. Ueland, E. Nexo, R. Clarke, J. McPartlin, C. C. Johnston, F. Engbaek, J. Schneede, C. McPartlin, J. Scott, Clin. Chem., 2004, 50,3.CrossRefPubMedGoogle Scholar
  13. 13.
    N. Lawrence, R. Deo, J. Wang, Talanta, 2004, 63,443.CrossRefPubMedGoogle Scholar
  14. 14.
    H. Refsum, P. Ueland, O. Nygård, S. Vollset, Ann. Rev. Med., 1998, 49,31.CrossRefPubMedGoogle Scholar
  15. 15.
    M. S. Elgawish, N. Kishikawab, N. Kurodab, Analyst, 2015, 140, 8148.CrossRefPubMedGoogle Scholar
  16. 16.
    F. Ursini, A. Bindoli. Chem. Phys. Lipids, 1987, 44,255.CrossRefPubMedGoogle Scholar
  17. 17.
    R. Brigelius-Flohe, Free Radic. Biol. Med., 1999, 27,951.CrossRefPubMedGoogle Scholar
  18. 18.
    K. Socha, J. Kochanowicz, E. Karpinska, J. Soroczynska, M. Jako niuk, Z. Mariak, M. H. Borawska, Nutrition J., 2014, 13,62.CrossRefGoogle Scholar
  19. 19.
    S. Sonthalia, D. Daulatabad, R. Sarkar, Indian J. Dermatol. Venereol. Leprol., 2016, 82,262.CrossRefPubMedGoogle Scholar
  20. 20.
    E. Y. Park, N. Shimura, T. Konishi, Y. Sauchi, S. Wada, W. Aoi, J. Agric. Food Chem., 2014, 62, 6183.CrossRefPubMedGoogle Scholar
  21. 21.
    F. Watanabe, E. Hashizume, G. P. Chan, A. Kamimura, Clin. Cosmet. Investig. Dermatol., 2014, 7,267.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Y. Shindo, T. Hashimoto, Arch. Dermatol. Res., 1995, 287,747.CrossRefPubMedGoogle Scholar
  23. 23.
    E. A. Mengele, D. A. Krugovov, O. T. Kasaikina, Russ. Chem. Bull. (Int. Ed.), 2015, 64,846.CrossRefGoogle Scholar
  24. 24.
    C. Chatgilialoglu, C. Ferreri, Acc. Chem. Res., 2005, 38,441.CrossRefPubMedGoogle Scholar
  25. 25.
    C. Ferreri, C. Costantino, L. Landi, Q. G. Mulazzani, C. Chatgilialoglu, Chem. Commun., 1999,407.Google Scholar
  26. 26.
    A. Samadi, I. Andreu, C. Ferreri, S. Dellonte, C. Chatgilialoglu, J. Am. Oil Chem. Soc., 2004, 81,753.CrossRefGoogle Scholar
  27. 27.
    K. M. Zinatullina, O. T. Kasaikina, V. A. Kuzmin, N. P. Khrameeva, B. I. Shapiro, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2825.CrossRefGoogle Scholar
  28. 28.
    K. M. Zinatullina, O. T. Kasaikina, V. A. Kuzmin, N. P. Khrameeva, B. I. Shapiro, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 1300.CrossRefGoogle Scholar
  29. 29.
    K. M. Zinatullina, N. P. Khrameeva, O. T. Kasaikina, B. I. Shapiro, V. A. Kuzmin, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 2145.CrossRefGoogle Scholar
  30. 30.
    M. R. Olthof, P. C. Hollman, M. B. Katan, J. Nutr., 2001, 131,66.CrossRefPubMedGoogle Scholar
  31. 31.
    N. Rajendra Prasad, A. Karthikeyan, S. Karthikeyan, B. V. Reddy, Mol. Cell Biochem., 2011, 349,11.CrossRefPubMedGoogle Scholar
  32. 32.
    C. Magnani, V. L. B. Isaac, M. A. Corrêa, H. R. N. Salgado, Anal. Methods, 2014, 6, 3203.CrossRefGoogle Scholar
  33. 33.
    G. L. Ellman. Arch. Biochem. Biophys., 1959, 82,70.CrossRefPubMedGoogle Scholar
  34. 34.
    C. D. Pereira, N. Minamino, T. Takao, Anal. Chem., 2015, 87, 10785.CrossRefPubMedGoogle Scholar
  35. 35.
    C. K. Riener, G. Kada, H. J. Gruber, Anal. Bioanal. Chem., 2002, 373, 266; DOI:10.1007/s00216-002-1347-2.CrossRefPubMedGoogle Scholar
  36. 36.
    A. A. Yakovleva, N. V. Gulyaeva, Biomedetsinskaya khimiya [Biomedical Chemistry], 2004, 50, No. 4, 390 (in Russian).Google Scholar
  37. 37.
    Pat. RF: 2515319, Bull. Izobret. [Invention Bulletin], 2014, No. 13 (in Russian).Google Scholar
  38. 38.
    O. T. Kasaikina, Catal. Sustain. Energy, 2014, 1, 21.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. M. Zinatullina
    • 1
    • 2
  • O. T. Kasaikina
    • 1
    • 3
  • V. A. Kuzmin
    • 2
    • 3
  • N. P. Khrameeva
    • 2
  1. 1.N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscow, Russian FederationRussia
  2. 2.N. M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow, Russian FederationRussia
  3. 3.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscow, Russian FederationRussia

Personalised recommendations