Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 614–623 | Cite as

Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics

  • O. V. Maslova
  • O. V. Senko
  • E. N. Efremenko
Review
  • 28 Downloads

Abstract

The methods of the fabrication of polymers based on aspartic and glutamic acids as monomers are reviewed. The methods are perspective from the viewpoint of green chemistry and economics. Actual tendencies existing in the application of the polymers in medicinal chemistry and pharmaceutics are also considered. The results of using mentioned polymers of amino acids to obtain stable nanosized enzymatic complex drugs, based on organophosphate hydrolase and possessing both antibacterial and antineurotoxic action are presented. The drugs are effective destructors of N-acyl homoserine lactones, playing the role of signaling molecules for the quorum response of gram-negative bacteria. These enzymatic-polymer complexes in combination with well-known antibiotics reduce antimicrobial doses inhibiting growth of the pathogens.

Key words

polyglutamic acid polyaspartic acid carriers drug delivery complexes enzymes organophosphate hydrolase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer, Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem., 2007, 9,411.CrossRefGoogle Scholar
  2. 2.
    F. Chen, Nature Biotechnol., 2007, 25,759.CrossRefGoogle Scholar
  3. 3.
    H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science, 2003, 299, 1694.CrossRefPubMedGoogle Scholar
  4. 4.
    J. J. Bozell, G. R. Petersen, Green Chem., 2010, 12,539.CrossRefGoogle Scholar
  5. 5.
    D. T. Allen, D. R. Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, New Jersey, 2001, 552 pp.Google Scholar
  6. 6.
    S. V. Gohil, S. Suhail, J. Rose, T. Vella, L. S. Nair, in Materials and Devices for Bone Disorders, Eds S. Bose, A. Bandyopadhyay, Academic Press, London, 2016.Google Scholar
  7. 7.
    G. I. Peterson, A. V. Dobrynin, M. L. Becker, ACS Macro Lett., 2016, 5, 1176.CrossRefGoogle Scholar
  8. 8.
    S. Roweton, S. J. Huang, G. Swift, J. Polym. Environ., 1997, 5,175.Google Scholar
  9. 9.
    T. Liang, C. X. Gao, L. Yang, H. L. Yang, Z. P. Luo, J. Mech. Behav. Biomed. Mater., 2017, 75,190.CrossRefPubMedGoogle Scholar
  10. 10.
    Q. Wang, X. M. Wang, L. L. Tian, Z. J. Cheng, F. Z. Cui, Soft Matter, 2011, 7, 9673.CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, C. Zhang, Q. Guo, G. Ma, L. Shen, H. Yu, B. Lin, N. Lu, K. Huang, Chin. Med. Sci. J., 2017, 39,318.Google Scholar
  12. 12.
    O. Karaman, A. Kumar, S. Moeinzadeh, X. He, T. Cui, E. Jabbar, J. Tissue Eng. Regen. Med., 2016, 10,132.CrossRefGoogle Scholar
  13. 13.
    R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar, S. Ramakrishna, Mater. Sci. Eng. C, 2012, 32, 1443.CrossRefGoogle Scholar
  14. 14.
    W. Hu, X. Feng, X. Liu, S. Dai, W. Zeng, Q. Jiang, B. Chen, C. Quan, K. Sun, C. Zhang, J. Biomater. Sci. Polym. Ed., 2016, 27, 1775.CrossRefGoogle Scholar
  15. 15.
    R. Wang, B. Zhou, D. L. Xu, H. Xu, L. Liang, X. H. Feng, P.-K. Ouyang, B. Chi, J. Bioact. Compat. Polym., 2016, 31,242.CrossRefGoogle Scholar
  16. 16.
    A. Ogunleye, A. Bhat, V. U. Irorere, D. Hill, C. Williams, I. Radecka, Microbiology, 2015, 161,1.CrossRefPubMedGoogle Scholar
  17. 17.
    E. N. Efremenko, I. V. Lyagin, N. L. Klyachko, T. Bronich, N. V. Zavyalova, Y. Jiang, A. V. Kabanov, J. Control. Release, 2017, 247,175.CrossRefPubMedGoogle Scholar
  18. 18.
    J. Pantshwa, Y. E. Choonara, P. Kumar, L. C. du Toit, C. Penny, V. Pillay, J. Drug Deliv. Sci. Technol., 2017, 39, 308.aaaaaCrossRefGoogle Scholar
  19. 19.
    S. Wan, J. Huang, M. Guo, H. Zhang, Y. Cao, H. Yan, K. Liu, J. Biomed. Mater. Res. A, 2007, 80,946.CrossRefPubMedGoogle Scholar
  20. 20.
    M. Hagimori, E. Hatabe, K. Sano, H. Miyazaki, H. Sasaki, H. Saji, T. Mukai, Biol. Pharm. Bull., 2017, 40,297.CrossRefPubMedGoogle Scholar
  21. 21.
    C. Ma, J. Zhang, L. Guo, C. Du, P. Song, B. Zhao, L. Li, C. Li, R. Qiao, Mol. Pharm., 2015, 13,47.CrossRefPubMedGoogle Scholar
  22. 22.
    K. Kanda, Y. Kodama, T. Kurosaki, M. Imamura, H. Nakagawa, T. Muro, N. Higuchi, T. Nakamura, T. Kitahara, M. Honda, H. Sasaki, Biol. Pharm. Bull., 2013, 36, 1794.CrossRefPubMedGoogle Scholar
  23. 23.
    X. B. Dou, Y. Hu, N. N. Zhao, F. J. Xu, Biomaterials, 2014, 35, 3015.CrossRefPubMedGoogle Scholar
  24. 24.
    S. M. Thombre, B. D. Sarwade, J. Macromol. Sci., Pure Appl. Chem. A, 2005, 42, 1299.CrossRefGoogle Scholar
  25. 25.
    I. Bajaj, R. Singhal, Bioresour. Technol., 2011, 102, 5551.CrossRefPubMedGoogle Scholar
  26. 26.
    T. Rogalinski, S. Herrmann, G. Brunner, J. Supercrit. Fluids, 2005, 36,49.CrossRefGoogle Scholar
  27. 27.
    M. Ikeda, Amino Acid Production Processes, in Microbial Production of Amino Acids, Springer, Berlin, 2003, p.1.Google Scholar
  28. 28.
    L. E. Ni, A. P. Chiriac, C. M. Popescu, I. Neam, J. Optoelectron. Adv. Mater., 2006, 8,663.Google Scholar
  29. 29.
    V. A. Yablokov, Ya. A. Vasina, I. D. Grishin, Russ. J. Gen. Chem., 2013, 83, 2046.CrossRefGoogle Scholar
  30. 30.
    H. Shinoda, Y. Asou, A. Suetsugu, K. Tanaka, Macromol. Biosci., 2003, 3,34.CrossRefGoogle Scholar
  31. 31.
    T. R. Felthouse, J. C. Burnett, B. Horrell, M. J. Mummey, Y. J. Kuo, in Kirk-Othmer Encyclopedia of Chemical Technology, Huntsman Petrochemical Corporation Austin Laboratories, Texas, 2001, p.58.Google Scholar
  32. 32.
    T. Tosa, T. Sato, T. Mori, I. Chibata, Appl. Microbiology, 1974, 27, 886.Google Scholar
  33. 33.
    O. V. Senko, N. A. Stepanov, O. V. Maslova, I. V. Lyagin, E. N. Efremenko, Vestnik KuzGTU [Newsletter Kuzbass State Tech. Univ.], 2013, 1, 111 (in Russian).Google Scholar
  34. 34.
    J. G. Zeikus, M. K. Jain, P. Elankovan, Appl. Microbiol. Biotechnol., 1999, 51,545.CrossRefGoogle Scholar
  35. 35.
    J. M. Buescher, A. Margaritis, Crit. Rev. Biotechnol., 2007, 27,1.CrossRefPubMedGoogle Scholar
  36. 36.
    M. H. Sung, C. Park, C. J. Kim, H. Poo, K. Soda, M. Ashiuchi, Chem. Rec., 2005, 5,352.CrossRefPubMedGoogle Scholar
  37. 37.
    S. Sirisansaneeyakul, M. Cao, N. Kongklom, C. Chuensangjun, Z. Shi, Y. Chisti, World J. Microbiol. Biotechnol., 2017, 33,173.CrossRefPubMedGoogle Scholar
  38. 38.
    D. D. Derbikov, A. D. Novikov, T. A. Gubanova, M. G. Tarutina, I. T. Gvilava, D. M. Bubnov, A. S. Yanenko, Biotechnologiya [Biotechnology], 2016, 32, 38 (in Russian).Google Scholar
  39. 39.
    R. Schneerson, J. Kubler-Kielb, T. Y. Liu, Z. D. Dai, S. H. Leppla, A. Yergey, P. Backlund, J. Shiloach, F. Majadly, J. Robbins, Proc. Natl. Acad. Sci. USA, 2003, 100, 8945.CrossRefPubMedGoogle Scholar
  40. 40.
    E. J. Prodhomme, A. L. Tutt, M. J. Glennie, T. D. Bugg, Bioconjug. Chem., 2003, 14, 1148.CrossRefPubMedGoogle Scholar
  41. 41.
    C. Deng, J. Wu, R. Cheng, F. Meng, H. A. Klok, Z. Zhong, Prog. Polym. Sci., 2014, 39,330.CrossRefGoogle Scholar
  42. 42.
    A. C. Fonseca, M. H. Gil, P. N. Simões, Prog. Polym. Sci., 2014, 39, 1291.CrossRefGoogle Scholar
  43. 43.
    B. K. Pramanik, Y. Gao, L. Fan, F. A. Roddick, Z. Liu, Desalination, 2017, 404,224.CrossRefGoogle Scholar
  44. 44.
    M. Maeda, M. Kimura, Y. Hareyama, S. Inoue, J. Am. Chem. Soc., 1984, 106,250.CrossRefGoogle Scholar
  45. 45.
    B. K. Kishore, S. Ibrahim, P. Lambricht, G. Laurent, P. Maldague, P. M. Tulkens, J. Pharmacol. Exp. Ther., 1992, 262,424.PubMedGoogle Scholar
  46. 46.
    M. K. Reinhard, I. H. O. R. Bekersky, T. W. Sanders, B. J. Harris, G. H. Hottendorf, Antimicrob. Agents Chemother., 1994, 38,79.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    M. Molina, M. Asadian-Birjand, J. Balach, J. Bergueiro, E. Miceli, M. Calderón, Chem. Soc. Rev., 2015, 44, 6161.CrossRefPubMedGoogle Scholar
  48. 48.
    B. Gyarmati, E. Z. Mészár, L. Kiss, M. A. Deli, K. László, A. Szilágyi, Acta Biomater., 2015, 22,32.CrossRefPubMedGoogle Scholar
  49. 49.
    C. Zhang, S. Wu, J. Wu, D. Wu, X. Qin, J. Porous Mater., 2017, 24,75.CrossRefGoogle Scholar
  50. 50.
    A. R. Katritzky, J. Yao, M. Qi, G. Qiu, W. Bao, B. Yang, O. Denisko, S. Davis, J. Zhang, J. Appl. Polym. Sci., 2001, 81,85.CrossRefGoogle Scholar
  51. 51.
    K. Matsumura, R. Rajan, S. Ahmed, M. Jain, in Biopolymers for Medical Applications, Eds J. M. Ruso, P. V. Messina, CRC Press, Boca Raton, 2017, p.164.Google Scholar
  52. 52.
    T. Jiang, X. Yu, E. J. Carbone, C. Nelson, H. M. Kan, K. W. H. Lo, Int. J. Pharm., 2014,. 475,547.CrossRefPubMedGoogle Scholar
  53. 53.
    H. Xu, Q. Yao, C. Cai, J. Gou, Y. Zhang, H. Zhong, X. Tang, J. Control. Release, 2015, 199,84.CrossRefPubMedGoogle Scholar
  54. 54.
    Y. H. Lin, C. K. Chung, C. T. Chen, H. F. Liang, S. C. Chen, H. W. Sung, Biomacromolecules, 2005, 6, 1104.CrossRefPubMedGoogle Scholar
  55. 55.
    P. Zhang, E. Wagner, Top. Cur. Chem., 2017, 375,26.CrossRefGoogle Scholar
  56. 56.
    T. G. Park, J. H. Jeong, S. W. Kim, Adv. Drug Deliv. Rev., 2006, 58,467.CrossRefPubMedGoogle Scholar
  57. 57.
    L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, L. W. Seymour, J. Control. Release, 2000, 65,187.CrossRefPubMedGoogle Scholar
  58. 58.
    M. Suwa, A. Hashidzume, Y. Morishima, T. Nakato, M. Tomida, Macromolecules, 2000, 33, 7884.CrossRefGoogle Scholar
  59. 59.
    J. Vega-Chacón, M. I. A. Arbeláez, J. H. Jorge, R. F. C. Marques, M. Jafelicci, Mater. Sci. Eng. C, 2017, 77,366.CrossRefGoogle Scholar
  60. 60.
    K. Naoyama, T. Mori, Y. Katayama, A. Kishimura, Macromol. Rapid Commun., 2016, 37, 1087.CrossRefPubMedGoogle Scholar
  61. 61.
    E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Nanoscale Res. Lett., 2014, 9,247.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    M. J. Cloninger, Curr. Opin. Chem. Biol., 2002, 6,742.CrossRefPubMedGoogle Scholar
  63. 63.
    L. I. F. Moura, N. Martinho, L. C. Silva, T. S. Barata, S. Brocchini, H. F. Florindo, M. Zloh, J. Drug. Target., 2017, 10,1.Google Scholar
  64. 64.
    M. Buriuli, D. Verma, in Advances in Biomaterials for Biomedical Applications, Eds A. Tripathi, J. S. Melo, Springer, Singapore, 2017, p.45.Google Scholar
  65. 65.
    C. W. Hsieh, W. C. Lu, W. C. Hsieh, Y. P. Huang, C. H. Lai, W. C. Ko, LWT-Food Sci. Technol., 2009, 42,144.CrossRefGoogle Scholar
  66. 66.
    S. F. Zhang, C. Gao, S. Lü, J. He, M. Liu, C. Wu, Y. Liu, X. Zhang, Z. Liu, Colloids Surf. B Biointerfaces, 2017, 159,284.CrossRefPubMedGoogle Scholar
  67. 67.
    S. Mao, R. Li, W. Wang, W. Feng, P. Ji, Catalysts, 2017, 7, 217.CrossRefGoogle Scholar
  68. 68.
    Yu. A. Votchitseva, E. N. Efremenko, T. K. Aliev, S. D. Varfolomeev, Biochemistry (Moscow), 2006, 76,167.CrossRefGoogle Scholar
  69. 69.
    E. Efremenko, Y. Votchitseva, F. Plieva, I. Galaev, B. Mattiasson, Appl. Microb. Biotech., 2006, 70,558.CrossRefGoogle Scholar
  70. 70.
    E. Efremenko, I. Lyagin, D. Gudkov, S. Varfolomeev, Biocatalysis Biotransform., 2007, 25,359.CrossRefGoogle Scholar
  71. 71.
    E. Efremenko, A. Peregudov, N. Kildeeva, P. Perminov, S. Varfolomeev, Biocatalysis Biotransform., 2005, 23,103.CrossRefGoogle Scholar
  72. 72.
    M. Sirotkina, E. N. Efremenko, Appl. Microbiol. Biotechnol., 2014, 98, 2647.CrossRefPubMedGoogle Scholar
  73. 73.
    K.-W. Hong, C.-L. Koh, C.-K. Sam, W.-F. Yin, K.-G. Chan, Sensors, 2012, 12, 4661.CrossRefPubMedGoogle Scholar
  74. 74.
    S. B. Tay, W. S. Yew, Int. J. Mol. Sci., 2013, 14, 16570.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    X. C. Li, C. Wang, A. Mulchandani, X. Ge, ACS Chem. Biol., 2016, 11, 3122.CrossRefPubMedGoogle Scholar
  76. 76.
    O. V. Maslova, O. V. Senko, N. A. Stepanov, A. G. Aslanli, E. N. Efremenko, JJNPP, 2017, 12, e63649.CrossRefGoogle Scholar
  77. 77.
    O. Maslova, A. Aslanli, N. Stepanov, I. Lyagin, E. Efremenko, Catalysts, 2017, 7,271.CrossRefGoogle Scholar
  78. 78.
    S. Zalipsky, Adv. Drug. Deliv. Rev., 1995, 16,157.CrossRefGoogle Scholar
  79. 79.
    I. R. Khalil, A. T. Burns, I. Radecka, M. Kowalczuk, T. Khalaf, G. Adamus, M. P. Khechara, Int. J. Mol. Sci., 2017, 18, 313.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Maslova
    • 1
  • O. V. Senko
    • 1
  • E. N. Efremenko
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscow, Russian FederationRussia

Personalised recommendations