Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 600–613 | Cite as

Quantum dots in proteomic studies and medical diagnostics

  • P. P. Gladyshev
  • Yu. V. Tumanov
  • S. A. Ibragimova
  • V. V. Kouznetsov
  • E. D. Gribova
Review
  • 25 Downloads

Abstract

Modern medical diagnostics requires the detection of minor amounts of target proteins at the background of numerous different biological components. With rare exception, these problems cannot be solved by purely physical research methods. In this case, the simplest and efficient approach is concerned with the principles of complementary affine interactions of biopolymers. In this case, high sensitivity of the analysis is achieved by the introduction of labels with certain physical properties in affinity bioreagents. This review is focused on the development of proteomic studies and medical diagnostics with the use of colloidal quantum dots (QDs) as labels in affinity bioreagents. This review is devoted to the description of in vitro proteomic approaches used in the studies and diagnostics, where the problem related to toxicity is not as crucial as in therapy and no restrictions on the types and composition of QDs are imposed. In this case, QDs are considered to be one of the key components of a bioanalytical system. The problems of proteomic medical diagnostics are discussed from the viewpoint of analytical chemistry with the account for the structure and properties of macromolecular analytes and appropriate bioreagents.

Key words

proteomics biomarkers biosensors quantum dots fluorescence immuniassay multiplex analysis clinical diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Kim, S. M. Pinto, D. Getnet, R. S. Nirujogi, S. S. Manda, R. Chaerkady, A. K. Madugundu, D. S. Kelkar, R. Isserlin, S. Jain, J. K. Thomas, B. Muthusamy, P. Leal-Rojas, P. Kumar, N. A. Sahasrabuddhe, L. Balakrishnan, J. Advani, B. George, S. Renuse, L. D. Selvan, A. H. Patil, V. Nanjappa, A. Radhakrishnan, S. Prasad, T. Subbannayya, R. Raju, M. Kumar, S. K. Sreenivasamurthy, A. Marimuthu, G. J. Sathe, S. Chavan, K. K. Datta, Y. Subbannayya, A. Sahu, S. D. Yelamanchi, S. Jayaram, P. Rajagopalan, J. Sharma, K. R. Murthy, N. Syed, R. Goel, A. A. Khan, S. Ahmad, G. Dey, K. Mudgal, A. Chatterjee, T. C. Huang, J. Zhong, X. Wu, P. G. Shaw, D. Freed, M. S. Zahari, K. K. Mukherjee, S. Shankar, A. Mahadevan, H. Lam, C. J. Mitchell, S. K. Shankar, P. Satishchandra, J. T. Schroeder, R. Sirdeshmukh, A. Maitra, S. D. Leach, C. G. Drake, M. K. Halushka, T. S. Prasad, R. H. Hruban, C. L. Kerr, G. D. Bader, C. A. Iacobuzio-Donahue, H. Gowda, A. Pandey, Nature, 2014, 509,575.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    B. A. Kairdolf, A. M. Smith, T. H. Stokes, M. D. Wang, A. N. Young, S. Nie, Annu. Rev. Anal. Chem., 2013, 6,143.CrossRefGoogle Scholar
  3. 3.
    A. B. Chinen, C. M. Guan, J. R. Ferrer, S. N. Barnaby, T. J. Merkel, C. A. Mirkin, Chem. Rev., 2015, 115, 10530.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    T. R. Pisanic II, Y. Zhang, T. H. Wang, Analyst, 2014, 139, 2968.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    R. Bilan, A. Sukhanova, I. Nabiev, Chem. Bio. Chem., 2016, 17, 2103.CrossRefPubMedGoogle Scholar
  6. 6.
    C. Warren, Acc. Chem. Res. 2017, 50,627.CrossRefGoogle Scholar
  7. 7.
    Y. Volkov, Biochem. Biophys. Res. Commun., 2015, 468,419.CrossRefPubMedGoogle Scholar
  8. 8.
    O. Tagit, N. Hildebrandt, ACS Sens., 2017, 2,34.CrossRefGoogle Scholar
  9. 9.
    C. A. Martínez Bonilla, V. V. Kouznetsov, in Green Nanotechnology–Overview and Further Prospects, Eds M. L. Larramendy, S. Soloneski, InTech, Rijeka, 2016, p.173.Google Scholar
  10. 10.
    N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, I. L. Medintz, Chem. Rev., 2017, 117,536.CrossRefPubMedGoogle Scholar
  11. 11.
    S. A. Kuznetsova, T. S. Oretskaya, Russ. Chem. Rev., 2016, 85,445.CrossRefGoogle Scholar
  12. 12.
    H. J. Lee, A. W. Wark, R. M. Corn, Analyst, 2008, 133,975.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    M. Angel, M. Rodrigo, O. Zitka, S. Krizkova, A. Moulick, V. Adam, R. Kizek, J. Pharm. Biomed. Analys., 2014, 95,245.CrossRefGoogle Scholar
  14. 14.
    E. Hosseini-Beheshti, S. Pham, H. Adomat, N. Li, E. S. Tomlinson Guns, Mol. Cell. Proteomics, 2012, 11,863.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    K. Sandvig, A. Llorente, Mol. Cell. Proteomics, 2012, 11, 012914.CrossRefPubMedGoogle Scholar
  16. 16.
    V. E. Shevchenko, A. V. Olenich, N. E. Arnotskaya, Progr. Mol. Oncol., 2015, 2,1.Google Scholar
  17. 17.
    Yu. A. Bespyatykh, E. A. Shitikov, E. N. Il´ina, Acta naturae, 2017, 9,16.Google Scholar
  18. 18.
    Q. Liu, X. Chen, C. Hu, R. Zhang, J. Yue, Lung, 2010, 188,15.CrossRefGoogle Scholar
  19. 19.
    H. Malen, G. A. De Souza, S. Pathak, T. Softeland, H. G. Wiker, BMC Microbiol., 2011, 11, 1471.CrossRefGoogle Scholar
  20. 20.
    W. Shui, C. J. Petzold, A. Redding, J. Liu, A. Pitcher, J. Proteome Res., 2011, 10,339.CrossRefPubMedGoogle Scholar
  21. 21.
    A. P. Bhavsar, S. D. Auweter, B. B. Finlay, Future Microbiol., 2010, 5,253.CrossRefPubMedGoogle Scholar
  22. 22.
    H. I. Boshoff, D. S. Lun, Drug Discov. Today Dis. Mech., 2010, 7, e75.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    J. Webber, T. C. Stone, E. Katilius, B. C. Smith, B. Gordon, M. D. Mason, Z. Tabi, I. A. Brewis, Mol. Cell. Proteomics, 2014, 13, 1050.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    T. A. Bychenkova, A. S. Balaban, N. S. Korotkova, A. L. Tyutyureva, V. G. Pomelova, N. S. Osin, Proc. Conf. "Reagents for the multiplexed analysis of pathogens based on the FOSFAN technology" (Moscow, March 18–20, 2014), Moscow, 2014, vol. 2, p. 389 (in Russian).Google Scholar
  25. 25.
    S. D. Jayasena, Clin. Chem., 1999, 45, 1628.PubMedGoogle Scholar
  26. 26.
    E. N. Brody, L. Gold, Rev. Mol. Biotechnol., 2000, 74,5.CrossRefGoogle Scholar
  27. 27.
    G. Mayer, Angew. Chem., 2009, 48, 2672.CrossRefGoogle Scholar
  28. 28.
    Yu. V. Tumanov, A. N. Boldyrev, A. I. Autenshlyus, Meditcinskaya biotekhnologiya: diagnostika zabolevanii i sozdanie lekarstvennykh preparatov [Medical biotechnology: diagnostics of diseases and development of drugs], NGTU, Novosibirsk, 2016, 214 pp. (in Russian).Google Scholar
  29. 29.
    A. J. Meulenbroek, W. P. Zeijlemaker, Human IgG Subclasses: Useful Diagnostic Markers for Immunocompetence, 3rd ed., Sanquin, Amsterdam, 2008, 52 pp.Google Scholar
  30. 30.
    E. Maverakis, K. Kim, M. Shimoda, M. E. Gershwin, F. Patel, R. Wilken, S. Raychaudhuri, L. R. Ruhaak, C. B. Lebrilla, J. Autoimmun., 2015, 57,1.CrossRefPubMedGoogle Scholar
  31. 31.
    S. M. Shamah, J. M. Healy, S. T. Cload, Acc. Chem. Res., 2008, 41,130.CrossRefPubMedGoogle Scholar
  32. 32.
    J. Zhou, J. J. Rossi, Oligonucleotides, 2011, 21,1.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    B. Hötzer, I. L. Medintz, N. Hildebrandt, Small, 2012, 8, 2297.CrossRefPubMedGoogle Scholar
  34. 34.
    M. M. Kemp, M. Weïwer, A. N. Koehler, Bioorg. Med. Chem., 2012, 20, 1979.CrossRefPubMedGoogle Scholar
  35. 35.
    N. Dasilva; P. Díez, S. Matarraz, M. González-González, S. Paradinas, A. Orfao, M. Fuentes, Sensors, 2012, 12, 2284.CrossRefPubMedGoogle Scholar
  36. 36.
    W. C. W. Chan, S. Nie, Science, 1998, 281, 2016.CrossRefPubMedGoogle Scholar
  37. 37.
    P. P. Gladyshev, A. A. Vasil´ev, O. S. Morenkov, V. V. Vrublevskaya, Yu. V. Tumanov, A. N. Boldyrev, S. V. Dezhurov, D. V. Kryl'skii, S. A. Ibragimova, in Modern medicine: current challenges. Proc. Second Int. Scient. Appl. Conf., SIBAC, Novosibirsk, 2016, p. 22 (in Russian).Google Scholar
  38. 38.
    J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Opt. Mater. Express, 2012, 2,594.CrossRefGoogle Scholar
  39. 39.
    R. B. Vasil´ev, D. N. Dirin, in Kvantovye tochki: sintez, svoistva, primenenie [Quantum dots: synthesis, properties, and application], M. V. Lomonosov Moscow State University, Moscow, 2007, 34 pp. (in Russian).Google Scholar
  40. 40.
    R. G. Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373.CrossRefGoogle Scholar
  41. 41.
    C. Carrillo-Carrion, S. Cardenas, B. M. Simonet, M. Valcarcel, Chem. Commun., 2009, 5214.Google Scholar
  42. 42.
    P. R. Fortes, C. Frigerio, C. I. C. Silvestre, J. L. M. Santos, J. L. F. C. Lima, E. A. G. Zagatto, Talanta, 2011, 84, 1314.CrossRefPubMedGoogle Scholar
  43. 43.
    F. A. Esteve-Turrillas, A. Abad-Fuentes, Biosens. Bioelectron., 2013, 41,12.CrossRefPubMedGoogle Scholar
  44. 44.
    S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev., 2015, 44,362.CrossRefPubMedGoogle Scholar
  45. 45.
    R. Wang, K. Lu, Z. Tang, Y. Xu, J. Mater. Chem., 2017, 5, 3717.CrossRefGoogle Scholar
  46. 46.
    X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, J. X. Zhaoa, J. Mater. Chem. C, 2013, 1, 4676.CrossRefGoogle Scholar
  47. 47.
    P.-H. Chung, E. Perevedentseva, C.-L. Cheng, Surf. Sci., 2007, 601, 3866.CrossRefGoogle Scholar
  48. 48.
    A. M. Schrand, S. A. C. Hens, O. A. Shenderova, Mater. Sci., 2009, 34,18.Google Scholar
  49. 49.
    Y. Zhong, X. Sun, S. Wang, F. Peng, F. Bao, Y. Su, Y. Li, S. T. Lee, Y. He, ACS Nano, 2015, 9, 5958.CrossRefPubMedGoogle Scholar
  50. 50.
    J. Zheng, C. W. Zhang, R. M. Dickson, Phys. Rev. Lett., 2004, 93, 077402.CrossRefPubMedGoogle Scholar
  51. 51.
    M. Hembury, C. Chiappini, S. Bertazzo, T. L. Kalber, G. L. Drisko, O. Ogunlade, S. Walker-Samuel, K. S. Krishna, C. Jumeaux, P. Beard, C. S. Kumar, A. E. Porter, M. F. Lyth goe, C. Boissiere, C. Sanchez, M. M. Stevens, Proc. Natl. Acad. Sci. U.S.A., 2015, 112, 1959.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    A. N. Sabari, V. D. Nithya, RSC Adv., 2016, 6, 65670.CrossRefGoogle Scholar
  53. 53.
    R. B. Vasil´ev, D. N. Dirin, A. M. Gas´kov, Russ. Chem. Rev., 2011, 80, 1139.CrossRefGoogle Scholar
  54. 54.
    S. F. Lee, M. A. Osborne, ChemPhysChem, 2009, 10, 2174.CrossRefPubMedGoogle Scholar
  55. 55.
    V. Rombach-Riegraf, O. R. Bienert, J. Petersen, M. P. Domingo, J. Pardo, P. Graeber, E. M. Galvez, Biochem. Biophys. Res. Commun., 2013, 430,260.CrossRefPubMedGoogle Scholar
  56. 56.
    J. Cui, A. P. Beyler, T. S. Bischof, M. W. B. Wilson, M. G. Bawendi, Chem. Soc. Rev., 2014, 43, 1287.CrossRefPubMedGoogle Scholar
  57. 57.
    C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.CrossRefGoogle Scholar
  58. 58.
    M. Gao, S. Kirstein, H. Möhwald, A. L. Rogach, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem., 1998, 102, 8360.CrossRefGoogle Scholar
  59. 59.
    N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem., 2002, 106, 7177.CrossRefGoogle Scholar
  60. 60.
    M. Bruchez, Jr., Science, 1998, 281, 2013.CrossRefPubMedGoogle Scholar
  61. 61.
    H. Zhu, M. Sun, X. A. Yang, Coll. Surf. A Physicochem. Eng. Asp., 2008, 320,74.CrossRefGoogle Scholar
  62. 62.
    O. M. Primera-Pedrozo, Z. Arslan, B. Rasulev, J. Leszczynski, Nanoscale, 2012, 4 1312.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Q. Sun, S. Fu, T. Dong, S. Liu, C. Huang, Molecules, 2012, 17, 8430.CrossRefPubMedGoogle Scholar
  64. 64.
    A. M. Smith, H. Duan, A. M. Mohs, S. Nie, Adv. Drug Deliv. Rev., 2008, 60, 1226.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Q. Xiao, S. Huang, W. Su, W. H. Chan, Y. Liu, Nanotechnology, 2012, 23,1.CrossRefGoogle Scholar
  66. 66.
    H. Han, G. D. Francesco, M. M. Maye, J. Phys. Chem., 2010, 114, 19270.Google Scholar
  67. 67.
    T. Tsuzuki, P. G. McCormick, Appl. Phys. A Mater. Sci. Process., 1997, 65,607.CrossRefGoogle Scholar
  68. 68.
    S. Sain, S. K. Pradhan, J. Alloys Compd., 2011 509, 4176.CrossRefGoogle Scholar
  69. 69.
    Y. Bao, J. Li, Y. Wang, L. Yu, J. Wang, W. Du, L. Lou, Z. Zhu, H. Peng, J. Zhu, Opt. Mater., 2012, 34, 1588.CrossRefGoogle Scholar
  70. 70.
    Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang, L. H. Wang, Adv. Mater., 2008, 20, 3416.CrossRefGoogle Scholar
  71. 71.
    S. Li, H. Zhao, D. Tian, Mater. Sci. Semicond. Process, 2013, 16,149.CrossRefGoogle Scholar
  72. 72.
    V. V. Butova, A. P. Budnyk, T. A. Lastovina, A. N. Kravtsova, A. V. Soldatov, Mendeleev Commun., 2017, 27,313.CrossRefGoogle Scholar
  73. 73.
    V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, Y. N. Osin, Mendeleev Commun., 2017, 27,274.CrossRefGoogle Scholar
  74. 74.
    A. M. Munro, J. A. Bardecker, M. S. Liu, Y.-J. Cheng, Y.-H. Niu, I. J.-L. Plante, A. K.-Y. Jen, D. S. Ginger, Microchim. Acta, 2008, 160,345.CrossRefGoogle Scholar
  75. 75.
    M. S. Farkhani, A. Valizadeh, IET Nanobiotechnol., 2014, 8,59.CrossRefGoogle Scholar
  76. 76.
    S. B. Brichkin, V. F. Razumov, Russ. Chem. Rev., 2016, 85, 1297.CrossRefGoogle Scholar
  77. 77.
    R. Wang, K. Lu, Z. Tang, Y. Xu, J. Mater. Chem., 2017, 5, 3717.CrossRefGoogle Scholar
  78. 78.
    N. O. Ronzhin, K. A. Kharin, A. P. Puzyr´, V. S. Bon dar´, J. Siberian Federal Univ. Biology (Engl. Transl.), 2010, 3,418.Google Scholar
  79. 79.
    H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang, H. Ju, ACS Appl. Mater. Interfaces, 2016, 8, 3107.CrossRefPubMedGoogle Scholar
  80. 80.
    S. Dey, Y. Zhou, X. Tian, J. A. Jenkins, O. Chen, S. Zou, J. Zhao, Nanoscale, 2015, 7, 6851.CrossRefPubMedGoogle Scholar
  81. 81.
    A. N. Generalova, V. P. Zubov, K. E. Mochalov, T. A. Zdobnova, S. V. Sizova, S. M. Deev, R. V. Petrov, Dokl. Biochem. Biophys., 2011, 439,151.CrossRefPubMedGoogle Scholar
  82. 82.
    M. Han, X. Gao, J. Z. Su, S. Nie, Nat. Biotechnol., 2001, 19,631.CrossRefPubMedGoogle Scholar
  83. 83.
    A. Sukhanova, A. S. Susha, A. Bek, S. Mayilo, A. L. Rogach, J. Feldmann, V. Oleinikov, B. Reveil, B. Donvito, J. H. Cohen, I. Nabiev, Nano Lett., 2007, 7, 2322.CrossRefPubMedGoogle Scholar
  84. 84.
    W. Mahmoud, A. Sukhanova, V. Oleinikov, Y. P. Rakovich, J. F. Donegan, M. Pluot, J. H. Cohen, Y. Volkov, I. Nabiev, Proteomics, 2010, 10,700.CrossRefPubMedGoogle Scholar
  85. 85.
    H. Duan, X. Huang, Y. Shao, L. Zheng, L. Guo, Y. Xiong, Anal. Chem., 2017, 89, 7062.CrossRefPubMedGoogle Scholar
  86. 86.
    A. A. Efimova, T. E. Grokhovskaya, A. V. Efimov, Mendeleev Commun., 2017, 27, 315CrossRefGoogle Scholar
  87. 87.
    E. Song, W. Han, J. Li, Y. Jiang, D. Cheng, Y. Song, P. Zhang, W. Tan, Anal. Chem., 2014, 86, 9434.CrossRefPubMedGoogle Scholar
  88. 88.
    M. A. Zvaigzne, I. L. Martynov, P. S. Samokhvalov, I. R. Nabiev, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2568.CrossRefGoogle Scholar
  89. 89.
    Y. Yin, A. P. Alivisatos, Nature, 2005, 437,664.CrossRefPubMedGoogle Scholar
  90. 90.
    A. R. Clapp, E. R. Goldman, H. Mattoussi, Nat. Protoc., 2006, 1, 1258.CrossRefPubMedGoogle Scholar
  91. 91.
    X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, Nat. Biotechnol., 2004, 22,969.CrossRefPubMedGoogle Scholar
  92. 92.
    X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol., 2003, 21, 4146.Google Scholar
  93. 93.
    B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science, 2002, 298, 1759.CrossRefPubMedGoogle Scholar
  94. 94.
    L. Treuel, S. Brandholt, P. Maffre, S. Wiegele, L. Shang, G. U. Nienhaus, ACS Nano, 2014, 8,503.CrossRefPubMedGoogle Scholar
  95. 95.
    T. Q. Vu, W. Y. Lam, E. W. Hatch, D. S. Lidke, Cell Tissue Res., 2015, 360,71.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    G. M. Akselrod, F. Prins, L. V. Poulikakos, E. M. Y. Lee, M. C. Weidman, A. J. Mork, A. P. Willard, V. Bulovic, W. A. Tisdale, Nano Lett., 2014, 14, 3556.CrossRefPubMedGoogle Scholar
  97. 97.
    P. R. Brown, K. Donghun, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, V. Bulovic, ACS Nano, 2014, 8, 5863.CrossRefPubMedGoogle Scholar
  98. 98.
    N. Suzuki, Y. Wang, P. Elvati, Z. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, N. Kotov, ACS Nano, 2016, 10, 1744.CrossRefPubMedGoogle Scholar
  99. 99.
    M. K. So, C. Xu, A. M. Loening, S. S. Gambhir, J. Rao, Nat. Biotechnol., 2006, 24,339.CrossRefPubMedGoogle Scholar
  100. 100.
    J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, I. L. Medintz, ACS Appl. Mater. Interfaces, 2014, 6, 3771.CrossRefPubMedGoogle Scholar
  101. 101.
    C. L. Dwyer, S. A. Díaz, S. A. Walper, A. Samanta, K. Susumu, E. Oh, S. Buckhout-White, I. L. Medintz, Chem. Mater., 2015, 27, 6490.CrossRefGoogle Scholar
  102. 102.
    K. B. Gemmill, S. Díaz, J. B. Blanco-Canosa, J. R. Deschamps, T. Pons, H.-W. Liu, A. Deniz, J. Melinger, E. Oh, K. Susumu, M. Stewart, D. Hastman, S. North, J. B. Delehanty, P. Dawson, I. L. Medintz, Chem. Mater., 2015, 27, 6222.CrossRefGoogle Scholar
  103. 103.
    J. Blanco-Canosa, M. Wu, K. Susumu, E. Petryayeva, T. L. Jennings, P. E. Dawson, W. R. Algar, I. L. Medintz, Coord. Chem. Rev., 2014, 263,101.CrossRefGoogle Scholar
  104. 104.
    J. Pathak, K. Rawat, S. Sanwlani, H. B. Bohidar, Chem-PhysChem, 2015, 16, 1777.Google Scholar
  105. 105.
    P. Maffre, S. Brandholt, K. Nienhaus, L. Shang, W. J. Parak, G. U. Nienhaus, Beilstein J. Nanotechnol, 2014, 5, 2036.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    P. P. Gladyshev, M. I. Goryaev, I. G. Shpilberg, Yu. A. Shapovalov, Molecul. Biology, 1982, 16,938.Google Scholar
  107. 107.
    P. P. Gladyshev, M. I. Goryaev, I. G. Shpilberg, Mole kulyarnaya biologiya [Molecular Biology], 1982, 16, 943 (in Russian).Google Scholar
  108. 108.
    D. Movia, V. Gerard, C. M. Maguire, N. Jain, A. P. Bell, V. Nicolosi, T. O´Neill, D. Scholz, Y. Gun´ko, Y. Volkov, A. Prina-Mello, Biomaterials, 2014, 35, 2543.CrossRefPubMedGoogle Scholar
  109. 109.
    D. Mathur, A. Samanta, E. Oh, S. A. Díaz, K. Susumu, M. G. Ancona, I. L. Medintz, Chem. Mater., 2017, 29, 5762.CrossRefGoogle Scholar
  110. 110.
    A. R. Chandrasekaran, O. Levchenko, Chem. Mater., 2016, 28, 5569.CrossRefGoogle Scholar
  111. 111.
    A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, Nat. Nanotechnol., 2011, 6,763.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    M. R. Jones, N. C. Seeman, C. A. Mirkin, Science, 2015, 347, 1260901.CrossRefPubMedGoogle Scholar
  113. 113.
    C. Zhang, R. J. Macfarlane, K. L. Young, C. H. J. Choi, L. Hao, E. Auyeung, G. Liu, X. Zhou, C. A. Mirkin, Nat. Mater., 2013, 12,741.CrossRefPubMedGoogle Scholar
  114. 114.
    D. Bhatia, S. Arumugam, M. Nasilowski, H. Joshi, C. Wunder, V. Chambon, V. Prakash, C. Grazon, B. Nadal, P. K. Maiti, L. Johannes, B. Dubertret, Y. Krishnan, Nat. Nanotechnol., 2016, 11, 1112.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    R. P. Goodman, I. A. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, A. J. Turberfield, Science, 2005, 310, 1661.CrossRefPubMedGoogle Scholar
  116. 116.
    C. M. Erben, R. P. Goodman, A. J. Turberfield, Angew. Chem., Int. Ed., 2006, 45, 7414.CrossRefGoogle Scholar
  117. 117.
    J. Lei, H. Ju, Chem. Soc. Rev., 2012, 41, 2122.CrossRefPubMedGoogle Scholar
  118. 118.
    S. Goggins, C. G. Frost, Analyst, 2016, 141, 3157.CrossRefPubMedGoogle Scholar
  119. 119.
    W. R. Algar, M. H. Stewart, A. M. Scott, W. J. Moon, I. L. Medintz, J. Mater. Chem., 2014, 2, 7816.CrossRefGoogle Scholar
  120. 120.
    J. Kim, M. J. Biondi, J. J. Feld, W. C. W. Chan, ACS Nano, 2016, 10, 4742.CrossRefPubMedGoogle Scholar
  121. 121.
    F. Long, C. Gu, A. Z. Gu, H. Shi, Anal. Chem., 2012, 84, 3646.CrossRefPubMedGoogle Scholar
  122. 122.
    D. Geiβler, N. Hildebrandt, Anal. Bioanal. Chem., 2016, 408, 4475.CrossRefGoogle Scholar
  123. 123.
    B. W. Van der Meer, in FRET–Förster Resonance Energy Transfer, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013, p.23.CrossRefGoogle Scholar
  124. 124.
    S. Bhuckory, O. Lefebvre, X. Qiu, K. Wegner, N. Hildebrandt, Sensors, 2016, 16,197.CrossRefPubMedGoogle Scholar
  125. 125.
    H. D. Gliddon, P. D. Howes, M. Kaforou, M. Levin, M. M. Stevens, Nanoscale, 2016, 8, 10087.CrossRefPubMedGoogle Scholar
  126. 126.
    X. Qiu, K. D. Wegner, Y. T. Wu, P. M. P. van Bergen en Henegouwen, T. L. Jennings, N. Hildebrandt, Chem. Mater., 2016, 28, 8256.CrossRefGoogle Scholar
  127. 127.
    L. Mattera, S. Bhuckory, K. D. Wegner, X. Qiu, F. Agnese, C. Lincheneau, T. Senden, D. Djurado, L. J. Charbonniere, N. Hildebrandt, P. Reiss, Nanoscale, 2016, 8, 11275.CrossRefPubMedGoogle Scholar
  128. 128.
    K. D. Wegner, Z. Jin, S. Lindén, T. L. Jennings, N. Hildebrandt, ACS Nano, 2013, 7, 7411.CrossRefPubMedGoogle Scholar
  129. 129.
    K. D. Wegner, S. Lindén, Z. Jin, T. L. Jennings, R. el Khoulati, P. M. P. van Bergen en Henegouwen, N. Hildebrandt, Small, 2014, 10,734.CrossRefPubMedGoogle Scholar
  130. 130.
    F. A. Esteve-Turrillas, A. Abad-Fuentes, Biosens. Bioelectron., 2013, 41,12.CrossRefPubMedGoogle Scholar
  131. 131.
    Q. Zeng, Q. Li, W. Ji, X. Bin, J. Song, Sci. Rep., 2016, 6, 26534.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    E. Petryayeva, W. R. Algar, Anal. Chem., 2013, 85, 8817.CrossRefPubMedGoogle Scholar
  133. 133.
    H. B. Kim, C. Y. W. Ng, W. R. Algar, Langmuir, 2014, 30, 5676.CrossRefPubMedGoogle Scholar
  134. 134.
    Q. Su, W. Feng, D. Yang, F. Li, Acc. Chem. Res., 2017, 50,32.CrossRefPubMedGoogle Scholar
  135. 135.
    G. Wen, H. Ju, Anal. Chem., 2016, 88, 8339.CrossRefPubMedGoogle Scholar
  136. 136.
    F. Zou, H. Zhou, T. V. Tan, J. Kim, K. Koh, J. Lee, ACS Appl. Mater. Interface, 2015, 7, 12168.CrossRefGoogle Scholar
  137. 137.
    V. Singh, R. Nerimetla, M. Yang, S. Krishnan, ACS Sens., 2017, 7,909.CrossRefGoogle Scholar
  138. 138.
    D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Nano Lett., 2004, 4,409.CrossRefGoogle Scholar
  139. 139.
    S. R. Ahmed, J. Dong, M. Yui, T. Kato, J. Lee, E. Park, J. Nanobiotechnol., 2013, 11,28.CrossRefGoogle Scholar
  140. 140.
    C. Kim, G. Hoffmann, P. C. Searson, ACS Sens., 2017, 2,766.CrossRefPubMedGoogle Scholar
  141. 141.
    S. W. Bae, W. Tan, J. I. Hong, Chem. Commun., 2012, 48, 2270.CrossRefGoogle Scholar
  142. 142.
    K. L. Gilroy, S. A. Cumming, A. R. Pitt, Anal. Bioanal. Chem., 2010, 398,547.CrossRefPubMedGoogle Scholar
  143. 143.
    N. V. Beloglazova, E. S. Speranskaya, A. Wu, Z. Wang, M. Sanders, V. V. Goftman, D. Zhang, I. Y. Goryacheva, S. De Saeger, Biosens. Bioelectron., 2014, 62,59.CrossRefPubMedGoogle Scholar
  144. 144.
    D. Liu, F. Wu, C. Zhou, H. Shen, H. Yuan, Z. Du, L. Ma, L. S. Li, Sens. Actuators, 2013, 186,235.CrossRefGoogle Scholar
  145. 145.
    Z. Li, Y. Wang, J. Wang, Z. Tang, J. G. Pounds, Y. Lin, Anal. Chem., 2010, 82, 7008.CrossRefPubMedGoogle Scholar
  146. 146.
    S. Wu, L. Liu, G. Li, F. Jing, H. Mao, Q. Jin, W. Zhai, H. Zhang, J. Zhao, C. Jia, Talanta, 2016, 156,48.CrossRefPubMedGoogle Scholar
  147. 147.
    S. Chen, L. Wei, X. W. Chen, J. H. Wang, Anal. Chem., 2015, 87, 10902.CrossRefPubMedGoogle Scholar
  148. 148.
    Y. Wang, S. Kalytchuk, Y. Zhang, H. Shi, S. V. Kershaw, A. L. Rogach, J. Phys. Chem. Lett., 2014, 5, 1412.CrossRefPubMedGoogle Scholar
  149. 149.
    E. Petryayeva, W. R. Algar, Anal. Chem., 2014, 86, 3195.CrossRefPubMedGoogle Scholar
  150. 150.
    E. R. Goldman, A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, H. Mattoussi, Anal. Chem., 2004, 76,684.CrossRefPubMedGoogle Scholar
  151. 151.
    K. Brazhnik, Z. Sokolova, M. Baryshnikova, R. Bilan, A. Efimov, I. Nabiev, A. Sukhanova, Nanomedicine, 2015, 11, 1065.CrossRefPubMedGoogle Scholar
  152. 152.
    Y. Gao, W. L. Stanford, W. C. W. Chan, Small, 2011, 7,137.CrossRefPubMedGoogle Scholar
  153. 153.
    S. W. Han, E. Jang, W. G. Koh, Sens. Actuators, 2015, 209,242.CrossRefGoogle Scholar
  154. 154.
    J. Kim, M. J. Biondi, J. J. Feld, W. C. W. Chana, ACS Nano, 2016, 10, 4742.CrossRefPubMedGoogle Scholar
  155. 155.
    S. Hamilton, P. Langford, Ionisation Mass Spectrometry, Quantitative Proteome Analysis, 2013, p.223.Google Scholar
  156. 156.
    S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, R. Aebersold, Nat. Biotechnol., 1999, 17,994.CrossRefPubMedGoogle Scholar
  157. 157.
    D. Albaba, S. Soomro, C. Mohan, Microarrays, 2015, 4,424.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    O. T. Schubert, J. Mouritsen, C. Ludwig, H. L. Rost, G. Rosenberger, P. K. Arthur, M. Claassen, D. S. Campbell, Z. Sun, T. Farrah, Cell Host Microbe, 2013, 13, 602.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. P. Gladyshev
    • 1
  • Yu. V. Tumanov
    • 2
  • S. A. Ibragimova
    • 1
  • V. V. Kouznetsov
    • 3
  • E. D. Gribova
    • 1
  1. 1.State University “Dubna”Dubna, Moscow Region, Russian FederationRussia
  2. 2.State Research Center for Virology and Biotechnology “Vector” of RospotrebnadzorKoltsovo, Novosibirsk Region, Russian FederationRussia
  3. 3.Organic and Biomolecular Chemistry LaboratoryIndustrial University of Santander, Parque Tecnológico GuatiguaráPiedecuestaColombia

Personalised recommendations