Advertisement

Research in Science Education

, Volume 49, Issue 5, pp 1457–1491 | Cite as

Instructional Quality Features in Videotaped Biology Lessons: Content-Independent Description of Characteristics

  • Tobias DorfnerEmail author
  • Christian Förtsch
  • William Boone
  • Birgit J. Neuhaus
Article

Abstract

A number of studies on single instructional quality features have been reported for mathematics and science instruction. For summarizing single instructional quality features, researchers have created a model of three basic dimensions (classroom management, supportive climate, and cognitive activation) of instructional quality mainly through observing mathematics instruction. Considering this model as valid for all subjects and as usable for describing instruction, we used it in this study which aimed to analyze characteristics of instructional quality in biology lessons of high-achieving and low-achieving classes, independently of content. Therefore, we used the data of three different previous video studies of biology instruction conducted in Germany. From each video study, we selected three high-achieving and three low-achieving classes (N = 18 teachers; 35 videos) for our multiple-case study, in which conspicuous characteristics of instructional quality features were qualitatively identified and qualitatively analyzed. The amount of these characteristics was counted in a quantitative way in all the videos. The characteristics we found could be categorized using the model of three basic dimensions of instructional quality despite some subject-specific differences for biology instruction. Our results revealed that many more characteristics were observable in high-achieving classes than in low-achieving classes. Thus, we believe that this model could be used to describe biology instruction independently of the content. We also make the claims about the qualities for biology instruction—working with concentration in a content-structured environment, getting challenged in higher order thinking, and getting praised for performance—that could have positive influence on students’ achievement.

Keywords

Multiple-case study Instructional quality features Video study Biology instruction Basic dimensions 

References

  1. Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  2. Allen, J., Gregory, A., Mikami, A., Lun, J., Hamre, B., & Pianta, R. (2013). Observations of effective teacher-student interactions in secondary school classrooms: predicting student achievement with the classroom assessment scoring system-secondary. School Psychology Review, 42(1), 76–98.Google Scholar
  3. Ang, R. P. (2005). Development and validation of the teacher-student relationship inventory using exploratory and confirmatory factor analysis. The Journal of Educational Research, 74(1), 55–73.Google Scholar
  4. Asoko, H., & Scott, P. (2006). Talk in science classrooms. In W. Harlen (Ed.), ASE guide to primary science education (pp. 158–166). Hatfield: Association for Science Education.Google Scholar
  5. Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(11), 361–375.CrossRefGoogle Scholar
  6. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers' professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 25–48). New York: Springer.CrossRefGoogle Scholar
  7. Baumert, J., Bos, W., & Lehmann, R. (2000). TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn [TIMSS/III. Third International Mathematics and Science Study. Mathematical and science education at the end of school]. Opladen: Leske + Budrich.Google Scholar
  8. Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., …, & Weiß, M. (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich [PISA 2000: basic competencies of students in international comparison]. Opladen: Leske + Budrich.Google Scholar
  9. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A, …, & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180.Google Scholar
  10. Baxter, P., & Jack, S. (2008). Qualitative case study methodology: study design and implementation for novice researchers. The Qualitative Report, 13, 544–559.Google Scholar
  11. Blömeke, S., Suhl, U., & Kaiser, G. (2011). Teacher education effectiveness: quality and equity of future primary teachers' mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62(2), 154–171.  https://doi.org/10.1177/0022487110386798.CrossRefGoogle Scholar
  12. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: fundamental measurement in the human sciences. Mahwah: Lawrence Erlbaum Associates Publishers.Google Scholar
  13. Boone, W. J., & Scantlebury, K. (2006). The role of Rasch analysis when conducting science education research utilizing multiple-choice tests. Science Education, 90(2), 253–269.  https://doi.org/10.1002/sce.20106.
  14. Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Heidelberg: Springer.Google Scholar
  15. Boone, W. J. (2016). Rasch Analysis for Instrument Development: Why, When, and How? CBE life sciences education, 15(4).  https://doi.org/10.1187/cbe.16-04-0148.
  16. Borko, H. (2004). Professional development and teacher learning: mapping the terrain. Educational Researcher, 33(8), 3–15.CrossRefGoogle Scholar
  17. Borko, H., & Putnam, R. T. (1996). Learning to teach. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 673–708). New York: Macmillan.Google Scholar
  18. Brunner, M., Kunter, M., Krauss, S., Klusmann, U., Baumert, J., Blum, W., …, & Tsai, Y.-M. (2006). Die professionelle Kompetenz von Mathematiklehrkräften: Konzeptualisierung, Erfassung und Bedeutung für den Unterricht. Eine Zwischenbilanz des COACTIV Projekts [The professional competence of mathematics teachers: conceptualization, observation and importance for instruction]. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG Schwerpunktprogramms [Studies about educational quality of school, final report of the DFG priority program] (pp. 54–82). Münster: Waxmann.Google Scholar
  19. Burchinal, M., Howes, C., Pianta, R., Bryant, D., Early, D., Clifford, R., & Barbarin, O. (2008). Predicting child outcomes at the end of kindergarten from the quality of pre-kindergarten teacher–child interactions and instruction. Applied Developmental Science, 12(3), 140–153.  https://doi.org/10.1080/10888690802199418.CrossRefGoogle Scholar
  20. Casabianca, J. M., McCaffrey, D. F., Gitomer, D. H., Bell, C. A., Hamre, B. K., & Pianta, R. C. (2013). Effect of observation mode on measures of secondary mathematics teaching. Educational and Psychological Measurement, 73(5), 757–783.  https://doi.org/10.1177/0013164413486987.CrossRefGoogle Scholar
  21. Cornelius-White, J. (2007). Learner-centred teacher-student relationships are effective: a meta-analysis. Review of Educational Research, 77(1), 113–143.CrossRefGoogle Scholar
  22. Cortina, K. S., & Thames, M. H. (2013). Teacher education in Germany. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 49–62). New York: Springer.CrossRefGoogle Scholar
  23. Creswell, J. W. (2002). Educational research: planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River: Pearson Education.Google Scholar
  24. Creswell, J. W. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research. Boston: Pearson Education.Google Scholar
  25. Deci, E. L., & Ryan, R. M. (2004). Handbook of self-determination research. Rochester, NY: The University of Rochester Press.Google Scholar
  26. Demuth, R. (Ed.). (2008). Chemie im Kontext: Von der Innovation zur nachhaltigen Verbreitung eines Unterrichtskonzepts [Chemistry in context: From innovation to the sustainable dissemination of a teaching concept]. Münster: Waxmann.Google Scholar
  27. Dorfner, T., Förtsch, C., & Neuhaus B. J. (2017). Die methodische und inhaltliche Ausrichtung quantitativer Videostudien zur Unterrichtsqualität im mathematischnaturwissenschaftlichen Unterricht. Ein Review. [The Methodical and Contentrelated Orientation of Quantitative Video Studies on Instructional Quality in Mathematics and Science Education. A Review]. Zeitschrift für Didaktik der Naturwissenschaften.  https://doi.org/10.1007/s40573-017-0058-3.
  28. Eisenhardt, K. M. (1989). Building theories from case study research. The Academy of Management Review, 14(4), 532–550.CrossRefGoogle Scholar
  29. Elster, D. (2006). bik: Erste Ergebnisse der qualitativen Evaluation [bik: first results from the qualitative evaluation]. Retrieved from http://bik.ipn.uni-kiel.de/typo3/fileadmin/user_upload/pdf/Elster_Evaluation.pdf
  30. Ennis, R. H. (1989). Critical thinking and subject specificity: clarification and needed research. Educational Researcher, 18(3), 4–10.CrossRefGoogle Scholar
  31. Ergönenc, J., Neumann, K., & Fischer, H. E. (2014). The impact of pedagogical content knowledge on cognitive activation and student learning. In H. E. Fischer, P. Labudde, K. Neumann, & J. Viiri (Eds.), Quality of instruction in physics. Comparing Finland, Germany and Switzerland (pp. 145–159). Waxmann: Münster.Google Scholar
  32. Evertson, C. M., & Weinstein, C. S. (2006). Handbook of classroom management: research, practice, and contemporary issues. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  33. Fischer, H. E., Labudde, P., Neumann, K., & Viiri, J. (2014). Quality of instruction in physics: comparing Finland, Germany and Switzerland. Münster: Waxmann.Google Scholar
  34. Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B. J. (2016). Effects of biology teachers’ professional knowledge and cognitive activation on students’ achievement. International Journal of Science Education, 38, 2642–2666.  https://doi.org/10.1080/09500693.2016.1257170.
  35. Förtsch, C., Werner, S., Dorfner, T., von Kotzebue, L., & Neuhaus, B. J. (2017). Effects of cognitive activation in biology lessons on students’ situational interest and achievement. Research in Science Education, 47(3), 559–578.  https://doi.org/10.1007/s11165-016-9517-y.
  36. Glaser, B. R., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Chicago: Aldine.Google Scholar
  37. Grossman, P. (2014). Collecting evidence of instruction with video and observation data in NCES surveys. Washington, DC: Prepared for the National Academy of Education’s Workshop to Examine Current and Potential Uses of NCES Longitudinal Surveys by the Education Research Community.Google Scholar
  38. Harlen, W. (2010). Principles and big ideas of science education. Gosport: Ashford Colour Press Ltd..Google Scholar
  39. Hattie, J. A. C. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. Abingdon: Routledge.Google Scholar
  40. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.  https://doi.org/10.3102/003465430298487.CrossRefGoogle Scholar
  41. Helmke, A. (2014). Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts [Quality of teaching and teacher professionalism: diagnosis, evaluation and improvement of teaching.]. Bobingen: Klett.Google Scholar
  42. Howes, C., Burchinal, M., Pianta, R., Bryant, D., Early, D., Clifford, R., & Barbarin, O. (2008). Ready to learn? Children's pre-academic achievement in pre-kindergarten programs. Early Childhood Research Quarterly, 23(1), 27–50.  https://doi.org/10.1016/j.ecresq.2007.05.002.CrossRefGoogle Scholar
  43. Jatzwauk, P., Rumann, S., & Sandmann, A. (2008). Der Einfluss des Aufgabeneinsatzes im Biologieunterricht auf die Lernleistung der Schüler - Ergebnisse einer Videostudie [The effect of usage of tasks in biology education on learning performance—a video study]. Zeitschrift für Didaktik der Naturwissenschaften, 14, 263–283.Google Scholar
  44. Jüttner, M., Boone, W., Park, S., & Neuhaus, B. J. (2013). Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educational Assessment, Evaluation and Accountability, 25(1), 45–67.  https://doi.org/10.1007/s11092-013-9157-y.
  45. Kauertz, A., & Fischer, H. E. (2006). Assessing students’ level of knowledge and analyzing the reasons for learning difficulties in physics by Rasch analysis. In X. Liu & W. J. Boone (Eds.), Applications of Rasch measurement in science education (pp. 212–246). Maple Grove: JAM.Google Scholar
  46. Keller, M. M., Neumann, K., & Fischer, H. E. (2017). The impact of physics teachers’ pedagogical content knowledge and motivation on students’ achievement and interest. Journal of Research in Science Teaching, 54(5), 586–614.  https://doi.org/10.1002/tea.21378.CrossRefGoogle Scholar
  47. Klieme, E. (2006). Empirische Unterrichtsforschung: Aktuelle Entwicklungen, theoretische Grundlagen und fachspezifische Befunde. Einführung in den Thementeil [Empirical education research: current developments, theoretical fundamentals and subject-specific findings. Introduction to the part]. Zeitschrift für Pädagogik, 52, 765–773.Google Scholar
  48. Klieme, E., Schümer, G., & Knoll, S. (2001). Mathematikunterricht in der Sekundarstufe I: Aufgabenkultur und Unterrichtsgestaltung [Mathematics instruction in secondary level I: “task culture and teaching structure”]. In Bundesministerium für Bildungund Forschung (BMBF) (Ed.), TIMSS – Impulse für Schule und Unterricht. Forschungsbefunde, Reforminitiativen, Praxisberichte und Video-Dokumente [TIMSS—impulses for school and instruction. Research results, reform initiatives, practice results and video documents] (pp. 43–57). Bonn: Bundesministerium für Bildung und Forschung (BMBF).Google Scholar
  49. Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study: investigating effects of teaching and learning in Swiss and German mathematics classrooms. In T. Janik & T. Seidel (Eds.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster: Waxmann.Google Scholar
  50. Kounin, J. S. (2006). Techniken der Klassenführung. Standardwerke aus Psychologie und Pädagogik - Reprints: Vol. 3. [Techniques of classroom management. Standard work from psychology and pedagogy—reprints: vol. 3]. Münster: Waxmann.Google Scholar
  51. Kremer, K., Fischer, H. E., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standards-based outcomes in science education: perspectives from the German project ESNaS. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 201–218). Münster: Waxmann.Google Scholar
  52. Kunter, M., & Trautwein, U. (2013). Psychologie des Unterrichts [Psychology of instruction]. Paderborn: Schöningh.Google Scholar
  53. Kunter, M., & Voss, T. (2011). Das Modell der Unterrichtsqualität in COACTIV: Eine multikriteriale Analyse. In M. Kunter, J. Baumert, W. Blum, U. Klussmann, S. Krauss, & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV [Professional competence of teachers. Results of the research program COACTIV] (pp. 85–113). Waxmann: Münster.Google Scholar
  54. Kunter, M., Baumert, J., & Köller, O. (2007). Effective classroom management and the development of subject-related interest. Learning and Instruction, 17(5), 494–509.  https://doi.org/10.1016/j.learninstruc.2007.09.002.CrossRefGoogle Scholar
  55. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013a). Cognitive activation in the mathematics classroom and professional competence of teachers: results from the COACTIV project. New York: Springer.Google Scholar
  56. Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013b). Professional competence of teachers: effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820.  https://doi.org/10.1037/a0032583.CrossRefGoogle Scholar
  57. Kyriakides, L., Christoforou, C., & Charalambous, C. Y. (2013). What matters for student learning outcomes: a meta-analysis of studies exploring factors of effective teaching. Teaching and Teacher Education, 36, 143–152.  https://doi.org/10.1016/j.tate.2013.07.010.CrossRefGoogle Scholar
  58. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.CrossRefGoogle Scholar
  59. Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers’ representation of pedagogical content knowledge. International Journal of Science Education, 30(10), 1343–1363.  https://doi.org/10.1080/09500690802187058.CrossRefGoogle Scholar
  60. Lenske, G., Wagner, W., Wirth, J., Thillmann, H., Cauet, E., Liepertz, S., & Leutner, D. (2016). Die Bedeutung des pädagogisch-psychologischen Wissens für die Qualität der Klassenführung und den Lernzuwachs der Schüler/innen im Physikunterricht [The importance of pedagogical knowledge for classroom management and for students’ achievement]. Zeitschrift für Erziehungswissenschaft, 19(1), 211–233.  https://doi.org/10.1007/s11618-015-0659-x.CrossRefGoogle Scholar
  61. Linacre, J. M. (2015). Winsteps (Version 3.81.0) [Software]. Available from http://www.winsteps.com/index.shtml
  62. Lipowsky, F. (2006). Auf den Lehrer kommt es an. Empirische Evidenzen für Zusammenhänge zwischen Lehrerkompetenzen, Lehrerhandeln und dem Lernen der Schüler [It depends on the teacher. Empirical evidence for correlations between teachers’ competencies, teachers’ actions and students’ learning]. In C. Allemann-Ghionda & E. Terhart (Eds.), Zeitschrift für Pädagogik. 51. Beiheft. Kompetenzen und Kompetenzentwicklung von Lehrerinnen und Lehrern: Ausbildung und Beruf (pp. 47–70). Beltz: Weinheim.Google Scholar
  63. Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students' understanding of the Pythagorean theorem. Learning and Instruction, 19(6), 527–537.  https://doi.org/10.1016/j.learninstruc.2008.11.001.CrossRefGoogle Scholar
  64. Liu, N., & Neuhaus, B. (2013). Gender inequality in biology classes in China and its effects on students’ short-term outcomes. International Journal of Science Education, 36(10), 1531–1550.  https://doi.org/10.1080/09500693.2013.868060.
  65. Lücken, M. (2006). bik: Hintergründe der Evaluation und vorläufige Ergebnisse [bik: background of evaluation and preliminary results]. Retrieved from http://bik.ipn.uni-kiel.de/typo3/fileadmin/user_upload/pdf/Evaluation_L_cken.pdf
  66. Mikelskis-Seifert, S., & Duit, R. (2010). Physik im Kontext – Konzepte, Ideeen, Materialien für effizienten Physikunterricht [Physics in context—concepts, ideas, materials for efficient physics teaching]. Seelze: Friedrich Verlag.Google Scholar
  67. Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.Google Scholar
  68. Muijs, D., Reynolds, D., & Kyriakides, L. (2016). The scientific properties of teacher effects/effective teaching processes. In C. Chapman, D. Muijs, D. Reynolds, P. Sammons, & C. Teddlie (Eds.), Routledge international handbooks: the Routledge international handbook of educational effectiveness and improvement: research, policy and practice (pp. 100–123). London: Routledge.Google Scholar
  69. Munby, H., Russel, T., & Martin, A. K. (2001). Teachers' knowledge and how it develops. In V. Richardson (Ed.), Handbook of research on teaching (pp. 877–904). Washington: American Educational Research Association.Google Scholar
  70. Nawani, J., Rixius, J., & Neuhaus, B. J. (2016). Influence of using challenging tasks in biology classrooms on students’ cognitive knowledge structure: an empirical video study. International Journal of Science Education, 38(12), 1882–1903.  https://doi.org/10.1080/09500693.2016.1213456.
  71. Neuhaus, B. J. (2007). Unterrichtsqualität als Forschungsfeld für empirische biologiedidaktische Studien [Instructional quality as a research field for empirical educational studies on biology education]. In D. Krüger & H. Vogt (Eds.), Springer- Lehrbuch. Theorien in der biologiedidaktischen Forschung. Ein Handbuch für Lehramtsstudenten und Doktoranden [Springer- Textbook. Theories in research on biology education] (pp. 243–254). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  72. Newmann, F. M. (1990). Higher order thinking in teaching social studies: a rationale for the assessment of classroom thoughtfulness. Journal of Curriculum Studies, 22(1), 41–56.  https://doi.org/10.1080/0022027900220103.CrossRefGoogle Scholar
  73. Osborne, J. (2010). Science without literacy: a ship without a sail? Cambridge Journal of Education, 32(2), 203–218.  https://doi.org/10.1080/03057640220147559.CrossRefGoogle Scholar
  74. Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.  https://doi.org/10.1007/s11165-007-9049-6.CrossRefGoogle Scholar
  75. Perkins, D. N., & Unger, C. (1999). Teaching and learning for understanding. In C. M. Reigeluth (Ed.), Instructional-design theories and models (pp. 91–114). Mahwah: Erlbaum.Google Scholar
  76. Pianta, R. C., & Hamre, B. K. (2009). Conceptualization, measurement, and improvement of classroom processes: standardized observation can leverage capacity. Educational Researcher, 38, 109–119.CrossRefGoogle Scholar
  77. Pianta, R. C., Hamre, B. K., & Mintz, S. L. (2012). Classroom assessment scoring system (CLASS): secondary class manual. Charlottesville: Teachstone.Google Scholar
  78. Postman, N., & Weingartner, C. (1971). Teaching as a subversive activity. Harmondsworth: Penguin.Google Scholar
  79. Praetorius, A. K., Pauli, C., Reusser, K., Rakoczy, K., & Klieme, E. (2014). One lessons is all you need? Stability of instructional quality across lessons. Learning and Instruction, 31, 2–12.CrossRefGoogle Scholar
  80. Raudenbush, S. W., Rowan, B., & Cheong, Y. F. (1993). Higher order instructional goals in secondary schools: class, teacher, and school influences. American Educational Research Journal, 30(3), 523–553.CrossRefGoogle Scholar
  81. Schlesinger, L., & Jentsch, A. (2016). Theoretical and methodological challenges in measuring instructional quality in mathematics education using classroom observations. ZDM Mathematics Education, 48, 29–40.CrossRefGoogle Scholar
  82. Schmelzing, S., van Driel, J. H., Jüttner, M., Brandenbusch, S., Sandmann, A., & Neuhaus, B. J. (2013c). Development, evaluation, and validation of a paper-and-pencil test for measuring two components of biology teachers’ pedagogical content knowledge concerning the “cardiovascular system”. International Journal of Science and Mathematics Education, 11(6), 1369–1390.  https://doi.org/10.1007/s10763-012-9384-6.
  83. Scott, P. H. (1997). Developing science concepts in secondary classrooms: an analysis of pedagogical interactions from a Vygotskian perspective. PhD thesis, University of Leeds.Google Scholar
  84. Scott, P., & Ametller, J. (2007). Teaching science in a meaningful way: striking a balance between ‘opening up’ and ‘closing down’ classroom talk. School Sciene Review, 88(324), 1–8.Google Scholar
  85. Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: the role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499.  https://doi.org/10.3102/0034654307310317.CrossRefGoogle Scholar
  86. Seidel, T., Prenzel, M., & Kobarg, M. (2005). How to run a video study: technical report of the IPN video study. Münster: Waxmann.Google Scholar
  87. Seidel, T., Prenzel, M., Rimmele, R., Dalehefte, I. M., Herweg, C., Kobarg, M., & Schwindt, K. (2006). Blicke auf den Physikunterricht. Ergebnisse der IPN Videostudie [Views to the physics instruction. Results from the IPN video study]. Zeitschrift für Pädagogik, 52(6), 798–821.Google Scholar
  88. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  89. Shulman, L. S. (1987). Knowledge and teaching of the new reform. Harvard Educational Review, 57, 1–22.CrossRefGoogle Scholar
  90. Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS videotape classroom study: methods and findings from an exploratory research project on eighth-grade mathematics instruction in Germany, Japan, and the United States. Washington D.C.: U.S. Government Printing Office.Google Scholar
  91. Tepner, O., Borowski, A., Dollny, S., Fischer, H. E., Jüttner, M., Kirschner, S., …, & Wirth, J. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften [Model for the development of test items measuring science teachers’ professional knowledge]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.Google Scholar
  92. The Standing Conference of the Ministers of Education and Cultural Affairs of The Länder in the Federal Republic of Germany. (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [Educational standards in biology for the intermediate school-leaving qualification]. München: Wolters Kluwer.Google Scholar
  93. The Standing Conference of the Ministers of Education and Cultural Affairs of The Länder in the Federal Republic of Germany. (2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss [Educational standards in chemistry for the intermediate school-leaving qualification]. München: Wolters Kluwer.Google Scholar
  94. The Standing Conference of the Ministers of Education and Cultural Affairs of The Länder in the Federal Republic of Germany. (2005c). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss [Educational standards in physics for the intermediate school-leaving qualification]. München: Wolters Kluwer.Google Scholar
  95. Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237–246.  https://doi.org/10.1177/1098214005283748.CrossRefGoogle Scholar
  96. van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.CrossRefGoogle Scholar
  97. von Kotzebue, L., Förtsch, C., Reinold, P., Werner, S., Sczudlek, M., & Neuhaus, B. J. (2015). Quantitative Videostudien zum gymnasialen Biologieunterricht in Deutschland – Aktuelle Tendenzen und Entwicklungen. [Quantitative video studies on German biology instruction in the Gymnasium – actual trends and developments]. Zeitschrift für Didaktik der Naturwissenschaften, 21(1), 231–237.  https://doi.org/10.1007/s40573-015-0033-9.
  98. Voss, T., & Kunter, M. (2013). Teachers’ general pedagogical/psychological knowledge. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: results from the COACTIV project (pp. 207–228). New York: Springer.CrossRefGoogle Scholar
  99. Voss, T., Kunter, M., Seiz, J., Hoehne, V., & Baumert, J. (2014). Die Bedeutung des pädagogisch-psychologischen Wissens von angehenden Lehrkräften für die Unterrichtsqualität [The significance of the pedagogical-psychological knowledge of future teachers for the quality of teaching]. Zeitschrift für Pädagogik, 60(2), 184–201.Google Scholar
  100. Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. J. (2014). The effect of knowledge linking levels in biology lessons upon students’ knowledge structure. International Journal of Science and Mathematics Education, 12, 25–47.Google Scholar
  101. Walberg, H. J., & Paik, S. J. (2000). Effective educational practices (Vol. 3). Brussels: UNESCO International Academy of Education/International Bureau of Education (IAE).Google Scholar
  102. Wang, M., Haertel, G., & Walberg, H. (1990). What influences learning? A content analysis of review literature. The Journal of Educational Research, 84(1), 30–43.CrossRefGoogle Scholar
  103. Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. Review of Educational Research, 63(3), 249–294.  https://doi.org/10.3102/00346543063003249.CrossRefGoogle Scholar
  104. Werner, S. (2016). Zusammenhänge zwischen dem fachspezifischen Professionswissen einer Lehrkraft, dessen Unterrichtsgestaltung und Schülervariablen am Beispiel eines elaborierten Modelleinsatzes [Relations between the subject-specific content knowledge of a teacher, his instructional design and students’ variables on the example of an elaborated use of models]. Dissertation, Ludwig-Maximilians-Universität München.Google Scholar
  105. Werner, S., Förtsch, C., Boone, W., von Kotzebue, L. & Neuhaus, B. J. (2017). Investigating how German biology teachers use models in classroom instruction: A video study. Research in Science Education.  https://doi.org/10.1007/s11165-017-9624-4.
  106. Yin, R. K. (2003). Case study research: design and methods (3rd ed.). Thousand Oaks: Sage.Google Scholar
  107. Yore, L. D., Biszanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725.CrossRefGoogle Scholar
  108. Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: are they mutually exclusive? The Journal of Learning Sciences, 12(2), 145–181.CrossRefGoogle Scholar
  109. Zohar, A., Degani, A., & Vaaknin, E. (2001). Teachers’ beliefs about low-achieving students and higher order thinking. Teaching and Teacher Education, 17(4), 469–485.  https://doi.org/10.1016/S0742-051X(01)00007-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Biology Education, Department I, Faculty of BiologyLudwig-Maximilians University MunichMunichGermany
  2. 2.Department of Educational PsychologyMiami UniversityOxfordUSA

Personalised recommendations