Research in Science Education

, Volume 49, Issue 2, pp 413–435 | Cite as

Visual Literacy in Preservice Teachers: a Case Study in Biology

  • José Reyes Ruiz-GallardoEmail author
  • Beatriz García Fernández
  • Antonio Mateos Jiménez


In this study, we explore the competence of preservice teachers (n = 161) in labelling and creating new cross-sectional human diagrams, based on anatomy knowledge depicted in longitudinal sections. Using educational standards to assess visual literacy and ad hoc open questions, results indicate limited skills for both tasks. However, their competence is particularly poor creating diagrams, where shortcomings were observed not only in visual literacy but in content knowledge. We discuss the misconceptions detected during these assessments. Visual literacy training should be strengthened for these students, as it is a skill that is especially important for future teachers to use in learning, assessing, and reflecting on content in science education. This is particularly important in preservice teachers since they should be fluent in the use of visual teaching tools in teaching anatomy and other content in the biology curriculum.


Science education Visual literacy Biology education Preservice teachers Anatomy diagrams 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abimbola, I. O., & Baba, S. (1996). Misconceptions & alternative conceptions in science textbooks: the role of teachers as filters. The American Biology Teacher, 58(1), 14–19 Scholar
  2. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. doi: 10.1126/science.1204153.
  3. Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: theory and practice in science education (pp. 191–208). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  4. Allen, M. (2010). Misconceptions in primary science. Berkshire: McGraw-Hill.Google Scholar
  5. Avgerinou, M. D. (2009). Re-viewing visual literacy in the “bain d’images” era. TechTrends, 53(2), 28–34. doi: 10.1007/s11528-009-0264-z.
  6. Association of College and Research Libraries (2011). ACRL visual literacy competency standards for higher education. American Library Association. Retrieved from:
  7. Avargil, S., Herscovitz, O., & Dori, Y. J. (2012). Teaching thinking skills in context-based learning: teachers’ challenges and assessment knowledge. Journal of Science Education and Technology, 21, 207–225. doi: 10.1007/s10956-011-9302-7.
  8. Bandiera, M., & di Manno, V. (2001). Through the windpipe and intestine down to the stomach: attitude and competence of prospective primary school teachers. In: García-Rodeja Gayoso I., Diaz de Bustamante, J., Harms, U., & Jiménez Aleixandre, M.P. (Eds) Proceedings of the III Conference of European Researchers in Didactic of Biology. Santiago de Compostela: University of Santiago de Compostela (pp. 27–39).Google Scholar
  9. Banet, E., & Núñez, F. (1988). Ideas de los alumnos sobre la digestión: aspectos anatómicos. Enseñanza de las Ciencias, 6(1), 30–37.Google Scholar
  10. Banet, E., & Núñez, F. (1997). Teaching and learning about human nutrition: a constructivist approach. International Journal of Science Education, 19(10), 1169–1194. doi: 10.1080/0950069970191005.
  11. Bergey, B. W., Cromley, J. G., & Newcombe, N. S. (2015). Teaching high school biology students to coordinate text and diagrams: relations with transfer, effort, and spatial skill. International Journal of Science Education, 37(15), 2476–2502. doi: 10.1080/09500693.2015.1082672.
  12. Biggs, J. B. (Ed.). (1991). Teaching for learning: the view from cognitive psychology. Hawthorn: Australian Council for Educational Research.Google Scholar
  13. Boesdorfer, S., Lorsbach, A., & Morey, M. (2011). Using a vicarious learning event to create a conceptual change in preservice teachers’ understandings of the seasons. Electronic Journal of Science Education, 15(1) Retrieved from
  14. Britsch, S. (2013). Visual language and science understanding: a brief tutorial for teachers. The Australian Journal of Language and Literacy, 36(1), 17–27.Google Scholar
  15. Burnmark, L. (2002). Visual literacy: learn to see, see to learn. Alexandria: Association for Supervision and Curriculum Development.Google Scholar
  16. Butler, J., Simmie, G. M., & O’Grady, A. (2015). An investigation into the prevalence of ecological misconceptions in upper secondary students and implications for pre-service teacher education. European Journal of Teacher Education, 38(3), 300–319. doi: 10.1080/02619768.2014.943394.
  17. Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20, 155–166. doi: 10.1016/j.learninstruc.2009.02.014.
  18. Carvalho, G. S., Silva, R., & Clément, P. (2007). Historical analysis of Portuguese primary school textbooks (1920–2005) on the topic of digestion. International Journal of Science Education, 29(2), 173–193. doi: 10.1080/09500690600739340.
  19. Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11. doi: 10.1080/15248372.2012.725186.
  20. Chi, M. T. (2013). Two kinds and four sub-types of misconceived knowledge, ways to change it, and the learning outcomes. New York: Routledge.CrossRefGoogle Scholar
  21. Coleman, C. (2011). Teaching health care professionals about health literacy: a review of the literature. Nursing Outlook, 59(2), 70–78. doi: 10.1016/j.outlook.2010.12.004.
  22. Constable, H., Campbell, B., & Brown, R. (1988). Sectional drawings from science textbooks: an experimental investigation into pupils’ understanding. British Journal of Educational Psychology, 58, 89–102. doi: 10.1111/j.2044-8279.1988.tb00881.x.
  23. Crider, A. (2015). Teaching visual literacy in the astronomy classroom. New Directions for Teaching and Learning, 141, 7–18. doi: 10.1002/tl.20118.
  24. Davies, D. (2010). Teaching science creatively. New York: Routledge.Google Scholar
  25. Dimopoulos, K., Koulaidis, V., & Sklaveniti, S. (2003). Towards an analysis of visual images in school science textbooks and press articles about science and technology. Research in Science Education, 33(2), 189–216.CrossRefGoogle Scholar
  26. Duit, R., & Treagust, D. F. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi: 10.1080/09500690305016.
  27. Duit, R., Treagust, D. F., & Widodo, A. (2013). Teaching science for conceptual change: theory and practice. S. Vosniadou. International handbook of research on conceptual change, 487–503.Google Scholar
  28. Egan, K. (1999). Fantasía e imaginación, su poder en la enseñanza primaria: una alternativa a la enseñanza y el aprendizaje en la educación infantil y primaria (Vol. 30). Madrid: Morata.Google Scholar
  29. Eilam, B. (2012). Teaching, learning, and visual literacy. The dual role of visual representation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Elkins, J. (2009). The concept of visual literacy and its limitations. In J. Elkins (Ed.), Visual literacy (pp. 11–14). New York: Taylor & Francis.Google Scholar
  31. Ernst, H., McGahan, W. T., & Harrison, J. (2015). Questionable benefit of visual and peer mediated learning on overall learning outcomes of a first-year physiology course. International Journal of Mobile and Blended Learning, 7(1), 25–40. doi: 10.4018/ijmbl.2015010103.
  32. Felten, P. (2008). Visual literacy. Change: the magazine of higher learning, 40(6), 60–64.Google Scholar
  33. Francek, M. (2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31–64. doi: 10.1080/09500693.2012.736644.
  34. García Fernández, B., Mateos Jiménez, A., & Bejarano Franco, M. (2016). Training teachers with a virtual learning community: connecting peers with an international dimension. Pedagogika, 122(2), 124-140. doi: 10.15823/p.2016.25.
  35. García Fernández, B., & Ruiz-Gallardo, J.R. (2017). Visual literacy in primary science: exploring anatomy cross-section production skills. Journal of Science Education and Technology, 26(2), 161-174. doi: 10.1007/s10956-016-9662-0.
  36. Giordan, A. (1985). Interés didáctico de los errores de los alumnos. Enseñanza de las Ciencias, 3(1), 11–17.Google Scholar
  37. Glasgow, J. N. (1994). Teaching visual literacy for the 21st century. Journal of Reading, 37(6), 494–500.Google Scholar
  38. Goldstein, B. (2001). Working with images (p. 2001). Cambridge: Cambridge University Press.Google Scholar
  39. Gomez-Zwiep, S. (2008). Elementary teachers’ understanding of students’ science misconceptions: Implications for practice and teacher education. Journal of Science Teacher Education, 19(5), 437–454. doi: 10.1007/s10972-008-9102-y.
  40. Gönen, S. (2008). A study on student teachers’ misconceptions and scientifically acceptable conceptions about mass and gravity. Journal of Science Education and Technology, 17(1), 70–81. doi: 10.1007/510956-007-9083-1.
  41. Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., & Baartman, L. (2014). Promoting science and technology in primary education: a review of integrated curricula. Studies in Science Education, 50(1), 47–84. doi: 10.1080/03057267.2013.877694.
  42. Hand, B., & Choi, A. (2010). Examining the impact of student use of multiple modal representations in constructing arguments in organic chemistry laboratory classes. Research in Science Education. doi: 10.1007/s11165-009-9155-8.
  43. Hartman, H. J. (2001). Metacognition in science teaching and learning. In H. J. Hartman (Ed.), Metacognition in learning and instruction (pp. 173–201). Dordrecht: Springer.CrossRefGoogle Scholar
  44. Hattwig, D., Bussert, K., Medaille, A., & Burgess, J. (2013). Visual literacy standards in higher education: new opportunities for libraries and student learning. Portal: Libraries and the Academy, 13(1), 61–89. doi: 10.1353/pla.2013.0008.
  45. Haug, B. S., & Ødegaard, M. (2015). Formative assessment and teachers’ sensitivity to student responses. International Journal of Science Education, 37(4), 629–654. doi: 10.1080/09500693.2014.1003262.
  46. Kearsey, J., & Turner, S. (1999). How useful are the figures in school biology textbooks? Journal of Biological Education, 33, 87–94.Google Scholar
  47. Kindfield, A. C. H. (1994). Biology diagrams: tools to think with. The Journal of the Learning Sciences, 3(1), 1–36. doi: 10.1207/s15327809jls0301_1.
  48. Köse, S. (2008). Diagnosing student misconceptions: using drawings as a research method. World Applied Sciences Journal, 3(2), 283–293.Google Scholar
  49. Kragten, M., Admiraal, W., & Rijlaarsdam, G. (2013). Diagrammatic literacy in secondary science education. Research in Science Education, 43(5), 1785–1800. doi: 10.1007/s11165-012-9331-0.
  50. Krajcik, J. S., & Sutherland, L. M. (2010). Supporting students in developing literacy in science. Science, 328(5977), 456–459. doi: 10.1126/science.1182593.
  51. Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099–1126. doi: 10.1080/09500690903253916.
  52. López-Manjón, A., & Postigo, Y. (2009). Representations of the human circulatory system. Journal of Biological Education, 43(4), 159–163. doi: 10.1080/00219266.2009.9656176.
  53. López-Manjón, A., & Postigo, Y. (2014). Análisis de las imágenes del cuerpo humano en libros de texto españoles de primaria. Enseñanza de las Ciencias, 32(3), 551–570.Google Scholar
  54. López Pastor, V. M. (2009). Evaluación formativa y compartida en Educación Superior: propuestas, técnicas, instrumentos y experiencias. Madrid: Narcea.Google Scholar
  55. Lowe, R. K. (2007). Educational illustrations. Perth, Western Australia: Savant Publications.Google Scholar
  56. Mackenzie, N. (2011). From drawing to writing: what happens when you shift teaching priorities in the first six months of school? Australian Journal of Language and Literacy, 34(3), 322–340.Google Scholar
  57. Magner, U. I. E., Schwonke, R., Aleven, V., Popescu, O., & Renkl, A. (2014). Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learning and Instruction, 29, 141–152. doi: 10.1016/j.learninstruc.2012.07.002.
  58. Mateos Jiménez, A., García Fernández, B., Bejarano Franco, M. T. (2016). How Spanish Science Teachers percieve the competence-based science teaching. Journal of Baltic Science Education, 15(3), 371–381.Google Scholar
  59. Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64–73. doi: 10.1037/0022-0663.88.1.64.
  60. McTigue, E. M., & Flowers, A. C. (2011). Science visual literacy: learners’ perceptions and knowledge of diagrams. The Reading Teacher, 64(8), 578–589. doi: 10.1598/RT.64.8.3.
  61. Metros, S. E., & Woolsey, K. (2006). Visual literacy: an institutional imperative. Educause Review, 41(3), 80–81.Google Scholar
  62. Mishra, P. (1999). The role of abstraction in scientific illustrations: implications for pedagogy. Journal of Visual Literacy, 19(2), 139–158.CrossRefGoogle Scholar
  63. Monteiro, A., Nóbrega, C., Abrantes, I., & Gomes, C. (2012). Diagnosing Portuguese students’ misconceptions about the mineral concept. International Journal of Science Education, 34(17), 2705–2726. doi: 10.1080/09500693.2012.731617.
  64. Moss, G. (2001). To work or play? Junior age nonfiction as objects of design. Reading, 35, 106–110. doi: 10.1111/1467-9345.00171.
  65. National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington: National Academies Press.Google Scholar
  66. National Research Council. (2013). The next generation science standards, appendix F: science and engineering practices. United States, Washington D.C.: National Academy of Sciences. Retrieved from:
  67. Núñez, F., & Banet, E. (1996). Modelos conceptuales sobre las relaciones entre digestión, respiración y circulación. Enseñanza de las Ciencias, 14(3), 261–278.Google Scholar
  68. Núñez, F., & Banet, E. (1997). Students’ conceptual patterns of human nutrition. International Journal of Science Education, 19(5), 509–526. doi: 10.1080/0950069970190502.
  69. Olmos, S., & Gavidia, V. (2014). El sistema linfático: el gran olvidado del sistema circulatorio. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 11(2), 181–197. doi: 10.10498/15974.
  70. O’Neil, K. E. (2011). Reading pictures: developing visual literacy for greater comprehension. The Reading Teacher, 65(3), 214–223. doi: 10.1002/TRTR.01026.CrossRefGoogle Scholar
  71. Patrick, P. G., & Tunnicliffe, S. D. (2010). Science teachers’ drawings of what is inside the human body. Journal of Biological Education, 44(2), 81–87. doi: 10.1080/00219266.2010.9656198.
  72. Perales, F. J., & Jiménez, J. D. (2002). Las ilustraciones en la enseñanza-aprendizaje de las ciencias. Análisis de libros de texto. Enseñanza de las Ciencias, 20(3), 369–386.Google Scholar
  73. Perales Palacios, F. J., & Vílchez González, J. M. (2015). Iniciación a la investigación educativa con estudiantes de secundaria: el papel de las ilustraciones en los libros de texto de ciencias. Enseñanza de las ciencias, 33(1), 243–262.Google Scholar
  74. Pérez de Eulate, L., Llorente, E., & Andrieu, A. (1999). Las imágenes de digestión y excreción en los textos de primaria. Enseñanza de las Ciencias, 17(2), 165–168.Google Scholar
  75. Pettersson, R. (2002). Information design: an introduction. Amsterdam: John Benjamins.CrossRefGoogle Scholar
  76. Postigo, Y., & López-Manjón, A. (2012). Students’ conceptions of biological images as representational devices. Revista Colombiana de Psicología, 21(2), 265–284.Google Scholar
  77. Prokop, P., & Fanèovièová, J. (2006). Students’ ideas about the human body: do they really draw what they know? Journal of Baltic Science Education, 2(10), 86–95.Google Scholar
  78. Prokop, P., Prokop, M., Tunnicliffe, S. D., & Diran, C. (2006). Children’s ideas of animals’ internal structures. Journal of Baltic Science Education, 41, 1–6.Google Scholar
  79. Ravanal, E., & Quintanilla, M. (2012). Concepciones del profesorado de biología en el ejercicio sobre el aprendizaje científico escolar. Enseñanza de las Ciencias, 30(2), 33–54.Google Scholar
  80. Reid, D. J. (1990). The role of pictures in learning biology: part 2, picture text processing. Journal of Biological Education, 24(4), 251–258. doi: 10.1080/00219266.1990.9655153.
  81. Reiss, M. J., Tunnicliffe, S. D., Andersen, A. M., Bartoszeck, A., Carvalho, G. S., Chen, S. Y., Jarman, R., Jónsson, S., Manokore, V., Marchenko, N., Mulemwa, J., Novikova, T., Otuka, T., Teppa, S., & Van Roy, W. (2002). An international study of young peoples’ drawings of what is inside themselves. Journal of Biological Education, 36(2), 58–64.CrossRefGoogle Scholar
  82. Rybarczyk, B. (2011). Visual literacy in biology: a comparison of visual representations in textbooks and journal articles. Journal of College Science Teaching, 41(1), 106.Google Scholar
  83. Rodríguez Estrada, F. C., & Davis, L. S. (2015). Improving visual communication of science through the incorporation of graphic design theories and practices into science communication. Science Communication, 37(1), 140–148. doi: 10.1177/1075547014562914.
  84. Roth, W. M., & McGinn, M. K. (1997). Graphing: cognitive ability or practice? Science Education, 81(1), 91–106.CrossRefGoogle Scholar
  85. Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L. (2013). The influence of teachers’ knowledge on student learning in middle school physical science classrooms. American Educational Research Journal, 50(3), 1020–1049.CrossRefGoogle Scholar
  86. Sáez López, J. M., & Ruiz-Gallardo, J. R. (2013). Enseñanza de las ciencias, tecnología educativa y escuela rural: un estudio de casos. Revista Electrónica de Enseñanza de las Ciencias, 12(1), 45–61.Google Scholar
  87. Sanders, M. (1993). Erroneous ideas about respiration: the teacher factor. Journal of Research in Science Teaching, 30(8), 919–934.CrossRefGoogle Scholar
  88. Salomon, G. (1998). Novel constructivist learning environments and novel technologies: some issues to be concerned with. Research Dialogue in Learning and Instruction, 1(1), 3–12.CrossRefGoogle Scholar
  89. Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical representations work? International Journal of Human-Computer Studies, 45(2), 185–213.CrossRefGoogle Scholar
  90. Tang, K. S., & Moje, E. B. (2010). Relating multimodal representations to the literacies of science. Research in Science Education, 40(1), 81–85. doi: 10.1007/s11165-009-9158-5.
  91. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. doi: 10.1177/0963721413484756.
  92. Wright, P. (1981). Tables in text: the subskills needed for reading formatted information. In L. J. Chapman (Ed.), The reader and the text. London: Heinemann Educational Books/United Kingdom Reading Association.Google Scholar
  93. Yeh, H. T., & Cheng, Y. C. (2010). The influence of the instruction of visual design principles on improving pre-service teachers’ visual literacy. Computers and Education, 54, 244–252. doi: 10.1016/j.compedu.2009.08.008.
  94. Yip, D. Y. (1998a). Teachers’ misconceptions of the circulatory system. Journal of Biological Education, 32(3), 207–215. doi: 10.1080/00219266.1998.9655622.
  95. Yip, D. Y. (1998b). Identification of misconceptions in novice biology teachers and remedial strategies for improving biology learning. International Journal of Science Education, 20(4), 461–477. doi: 10.1080/0950069980200406.
  96. Van Duzor, A. G. (2011). Capitalizing on teacher expertise: motivations for contemplating transfer from professional development to the classroom. Journal of Science Education and Technology, 20(4), 363–374. doi: 10.1007/s10956-010-9258-z.
  97. Zucker, A., Kay, R., & Staudt, C. (2014). Helping students make sense of graphs: an experimental trial of Smart Graphs software. Journal of Science Education and Technology, 23(3), 441–457.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Science Education, Department of Pedagogy, Faculty of Education of AlbaceteUniversity of Castilla-La ManchaAlbaceteSpain
  2. 2.Science Education, Department of Pedagogy, Faculty of Education of Ciudad RealUniversity of Castilla-La ManchaCiudad RealSpain
  3. 3.Science Education, Department of Pedagogy, Faculty of Education of ToledoUniversity of Castilla-La ManchaToledoSpain

Personalised recommendations