Advertisement

Research in Science Education

, Volume 49, Issue 1, pp 25–50 | Cite as

Investigating Gender Differences in Mathematics and Science: Results from the 2011 Trends in Mathematics and Science Survey

  • David ReillyEmail author
  • David L. Neumann
  • Glenda Andrews
Article

Abstract

The underrepresentation of women in science, technology, engineering, and mathematics (STEM)-related fields remains a concern for educators and the scientific community. Gender differences in mathematics and science achievement play a role, in conjunction with attitudes and self-efficacy beliefs. We report results from the 2011 Trends in Mathematics and Science Study (TIMSS), a large international assessment of eighth grade students’ achievement, attitudes, and beliefs among 45 participating nations (N = 261,738). Small- to medium-sized gender differences were found for most individual nations (from d = −.60 to +.31 in mathematics achievement, and d = −.60 to +.26 for science achievement), although the direction varied and there were no global gender differences overall. Such a pattern cross-culturally is incompatible with the notion of immutable gender differences. Additionally, there were different patterns between OECD and non-OECD nations, with girls scoring higher than boys in mathematics and science achievement across non-OECD nations. An association was found between gender differences in science achievement and national levels of gender equality, providing support for the gender segregation hypothesis. Furthermore, the performance of boys was more variable than that of girls in most nations, consistent with the greater male variability hypothesis. Boys reported more favorable attitudes towards mathematics and science, and girls reported lower self-efficacy beliefs. While the gender gap in STEM achievement may be closing, there are still large sections of the world where differences remain.

Keywords

Gender differences Mathematics Science Education Meta-analysis 

References

  1. Anderson, J., Lin, H.-S., Treagust, D., Ross, S., & Yore, L. (2007). Using large-scale assessment datasets for research in science and mathematics education: programme for international student assessment (PISA). International Journal of Science and Mathematics Education, 5(4), 591–614. doi: 10.1007/s10763-007-9090-y.CrossRefGoogle Scholar
  2. Baenninger, M., & Newcombe, N. S. (1989). The role of experience in spatial test performance: a meta-analysis. Sex Roles, 20(5), 327–344. doi: 10.1007/BF00287729.CrossRefGoogle Scholar
  3. Baker, D. P., & Jones, D. P. (1993). Creating gender equality: cross-national gender stratification and mathematical performance. Sociology of Education, 66(2), 91–103. doi: 10.2307/2112795.CrossRefGoogle Scholar
  4. Barnes, G., McInerney, D. M., & Marsh, H. W. (2005). Exploring sex differences in science enrolment intentions: an application of the general model of academic choice. The Australian Educational Researcher, 32(2), 1–23. doi: 10.1007/BF03216817.CrossRefGoogle Scholar
  5. Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863. doi: 10.1073/pnas.0910967107.CrossRefGoogle Scholar
  6. Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: their nature, effects, and possible causes. Behavioral and Brain Sciences, 11(2), 169–232. doi: 10.1017/S0140525X00049670.CrossRefGoogle Scholar
  7. Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani, H. (2000). Sex differences in mathematical reasoning ability at age 13: their status 20 years later. Psychological Science, 11(6), 474–480. doi: 10.1111/1467-9280.00291.CrossRefGoogle Scholar
  8. Bernstein, B., Jacobson, R., & Russo, N. F. (2010). Mentoring women in science, technology, engineering and mathematics fields. In F. Denmark, M. E. Reuder, & A. M. Austria (Eds.), A handbook for women mentors: transcending barriers of stereotype, race, and ethnicity (pp. 43–64). Westport, CT: Prager.Google Scholar
  9. Bhanot, R. T., & Jovanovic, J. (2009). The links between parent behaviors and boys’ and girls’ science achievement beliefs. Applied Developmental Science, 13(1), 42–59. doi: 10.1080/10888690802606784.CrossRefGoogle Scholar
  10. Borenstein, M., & Rothstein, H. R. (1999). Comprehensive meta-analysis: a computer program for research synthesis. Englewood, NJ: BioStat.Google Scholar
  11. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. West Sussex: Wiley.CrossRefGoogle Scholar
  12. Buckley, S. (2016). Gender and sex differences in student participation, achievement and engagement in mathematics. Melbourne: Australian Council for Educational Research.Google Scholar
  13. Burkam, D. T., Lee, V. E., & Smerdon, B. A. (1997). Gender and science learning early in high school: subject matter and laboratory experiences. American Educational Research Journal, 34(2), 297–331. doi: 10.3102/00028312034002297.CrossRefGoogle Scholar
  14. Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences, 108(8), 3157–3162. doi: 10.1073/pnas.1014871108.CrossRefGoogle Scholar
  15. Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114(4), 924–976. doi: 10.1086/595942.CrossRefGoogle Scholar
  16. Cohen, J. (1988). Statistical power analysis for the Behavioral sciences (2nd ed.). Hillsdale: Lawrence Earlbaum Associates.Google Scholar
  17. Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12(3), 258–261. doi: 10.1111/1467-9280.00347.CrossRefGoogle Scholar
  18. Dwyer, C. A., & Johnson, L. (1997). Grades, accomplishments, and correlates. In W. Willingham & N. S. Cole (Eds.), Gender and fair assessment (pp. 127–156). Mahwah: Erlbaum.Google Scholar
  19. Eagly, A. H., Wood, W., & Diekman, A. B. (2000). Social role theory of sex differences and similarities: a current appraisal. In T. Eckes & H. M. Trautner (Eds.), The developmental social psychology of gender (pp. 123–174). Mahwah: Lawrence Erlbaum Associatiates.Google Scholar
  20. Eccles, J. S. (1987). Gender roles and women’s achievement-related decisions. Psychology of Women Quarterly, 11(2), 135–172. doi: 10.1111/j.1471-6402.1987.tb00781.x.CrossRefGoogle Scholar
  21. Eccles, J. S. (1994). Understanding women’s educational and occupational choices. Psychology of Women Quarterly, 18(4), 585–609. doi: 10.1111/j.1471-6402.1994.tb01049.x.CrossRefGoogle Scholar
  22. Eccles, J. S. (2007). Where are all the women? Gender differences in participation in physical science and engineering. In S. J. Ceci (Ed.), Why aren’t more women in science? Top researchers debate the evidence (pp. 199–210). Washington DC: American Psychological Association.CrossRefGoogle Scholar
  23. Eccles, J. S. (2013). Gender and achievement choices. In E. T. Gershoff, R. S. Mistry, & D. Crosby (Eds.), Societal contexts of child development: pathways of influence and implications for practice and policy (pp. 19–34). New York: Oxford University Press.CrossRefGoogle Scholar
  24. Else-Quest, N. M., & Grabe, S. (2012). The political is personal: Measurement and application of nation-level indicators of gender equity in psychological research. Psychology of Women Quarterly, 36(2), 131–144. doi: 10.1177/0361684312441592.CrossRefGoogle Scholar
  25. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103–127. doi: 10.1037/a0018053.CrossRefGoogle Scholar
  26. Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309. doi: 10.1177/0361684313480694.CrossRefGoogle Scholar
  27. Feingold, A. (1992). Sex differences in variability in intellectual abilities: a new look at an old controversy. Review of Educational Research, 62(1), 61–84. doi: 10.3102/00346543062001061.CrossRefGoogle Scholar
  28. Feingold, A. (1994). Gender differences in variability in intellectual abilities: a cross-cultural perspective. Sex Roles, 30(1), 81–92. doi: 10.1007/BF01420741.CrossRefGoogle Scholar
  29. Feniger, Y. (2011). The gender gap in advanced math and science course taking: does same-sex education make a difference? Sex Roles, 65(9), 670–679. doi: 10.1007/s11199-010-9851-x.CrossRefGoogle Scholar
  30. Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 55–69. doi: 10.1007/BF00311015.CrossRefGoogle Scholar
  31. Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74(2), 435–452. doi: 10.1037/0022-3514.74.2.435.CrossRefGoogle Scholar
  32. Gallagher, A. M., & Kaufman, J. C. (Eds.). (2005). Gender differences in mathematics. New York: Cambridge University Press.Google Scholar
  33. Geary, D. C. (2010). Male, female: the evolution of human sex differences (2nd ed.). Washington DC: American Psychological Association.CrossRefGoogle Scholar
  34. Goldman, A. D., & Penner, A. M. (2014). Exploring international gender differences in mathematics self-concept. International Journal of Adolescence and Youth, 1–16, doi: 10.1080/02673843.2013.847850.
  35. Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165. doi: 10.1126/science.1154094.CrossRefGoogle Scholar
  36. Gunderson, E., Ramirez, G., Levine, S. C., & Beilock, S. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3), 153–166. doi: 10.1007/s11199-011-9996-2.CrossRefGoogle Scholar
  37. Halim, M. L., & Ruble, D. N. (2010). Gender identity and stereotyping in early and middle childhood. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 495–525). New York: Springer.CrossRefGoogle Scholar
  38. Halpern, D. F., Aronson, J., Reimer, N., Simpkins, S., Star, J. R., & Wentzel, K. (2007a). Encouraging girls in math and science. Washington DC: National Center for Education Research, U.S. Department of Education.Google Scholar
  39. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007b). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1–51. doi: 10.1111/j.1529-1006.2007.00032.x.CrossRefGoogle Scholar
  40. Handelsman, J., Cantor, N., Carnes, M., Denton, D., Fine, E., Grosz, B., et al. (2005). More women in science. Science, 309(5738), 1190–1191. doi: 10.1126/science.1113252.CrossRefGoogle Scholar
  41. Hausmann, R., Tyson, L. D., & Zahidi, S. (2011). The global gender gap report 2011. Geneva: World Economic Forum.Google Scholar
  42. Haworth, C. M. A., Dale, P. S., & Plomin, R. (2010). Sex differences in school science performance from middle childhood to early adolescence. International Journal of Educational Research, 49(2–3), 92–101. doi: 10.1016/j.ijer.2010.09.003.CrossRefGoogle Scholar
  43. Hedges, L. V. (2008). What are effect sizes and why do we need them? Child Development Perspectives, 2(3), 167–171. doi: 10.1111/j.1750-8606.2008.00060.x.CrossRefGoogle Scholar
  44. Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269(5220), 41–45. doi: 10.1126/science.7604277.CrossRefGoogle Scholar
  45. Huang, C. (2013). Gender differences in academic self-efficacy: a meta-analysis. European Journal of Psychology of Education, 28(1), 1–35. doi: 10.1007/s10212-011-0097-y.CrossRefGoogle Scholar
  46. Hunter, J. E., & Schmidt, F. L. (2000). Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. International Journal of Selection and Assessment, 8(4), 275–292. doi: 10.1111/1468-2389.00156.CrossRefGoogle Scholar
  47. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581–592. doi: 10.1037/0003-066X.60.6.581.CrossRefGoogle Scholar
  48. Hyde, J. S., & Linn, M. C. (2006). Gender similarities in mathematics and science. Science, 314(5799), 599–600. doi: 10.1126/science.1132154.CrossRefGoogle Scholar
  49. Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gender comparisons of mathematics attitudes and affect. Psychology of Women Quarterly, 14(3), 299–324. doi: 10.1111/j.1471-6402.1990.tb00022.x.CrossRefGoogle Scholar
  50. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494–495. doi: 10.1126/science.1160364.CrossRefGoogle Scholar
  51. Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-competence and values: gender and domain differences across grades one through twelve. Child Development, 73(2), 509–527. doi: 10.1111/1467-8624.00421.CrossRefGoogle Scholar
  52. Jodl, K. M., Michael, A., Malanchuk, O., Eccles, J. S., & Sameroff, A. (2001). Parents’ roles in shaping early adolescents’ occupational aspirations. Child Development, 72(4), 1247–1266. doi: 10.1111/1467-8624.00345.CrossRefGoogle Scholar
  53. Kane, J. M., & Mertz, J. E. (2012). Debunking myths about gender and mathematics performance. Notices of the AMS, 59(1), 10–21. doi: 10.1090/noti790.CrossRefGoogle Scholar
  54. Kenney-Benson, G. A., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in math performance: the role of children’s approach to schoolwork. Developmental Psychology, 42(1), 11–26. doi: 10.1037/0012-1649.42.1.11.CrossRefGoogle Scholar
  55. Kimura, D. (2000). Sex and cognition. Cambridge: MIT Press.Google Scholar
  56. Kimura, D. (2002). Sex hormones influence human cognitive pattern. Neuroendocrinology Letters, 23, 67–77.Google Scholar
  57. Kost-Smith, L. E., Pollock, S. J., Finkelstein, N. D., Cohen, G. L., Ito, T. A., Miyake, A., et al. (2012). Replicating a self-affirmation intervention to address gender differences: successes and challenges. In AIP Conference Proceedings-American Institute of Physics (Vol. 1413, pp. 231, Vol. 1).Google Scholar
  58. Lauer, S., Momsen, J., Offerdahl, E., Kryjevskaia, M., Christensen, W., & Montplaisir, L. (2013). Stereotyped: investigating gender in introductory science courses. CBE-Life Sciences Education, 12(1), 30–38. doi: 10.1187/cbe.12-08-0133.CrossRefGoogle Scholar
  59. Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls: relations to later self-concept and science achievement. Science Education, 97(4), 574–593. doi: 10.1002/sce.21066.CrossRefGoogle Scholar
  60. Liben, L. S., & Coyle, E. F. (2014). Developmental interventions to address the STEM gender gap: exploring intended and unintended consequences. In L. S. Liben & R. S. Bigler (Eds.), The role of gender in educational contexts and outcomes (Vol. 47, pp. 77–115, advances in child development and behavior). San Diego: Academic Press.Google Scholar
  61. Linn, R. L. (2002). The measurement of student achievement in international studies. In A. C. Porter & A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational achievement (pp. 27–57). Washingon: National Academy Press.Google Scholar
  62. Lippa, R. A. (1998). Gender-related individual differences and the structure of vocational interests: the importance of the people–things dimension. Journal of Personality and Social Psychology, 74(4), 996–1009. doi: 10.1037/0022-3514.74.4.996.CrossRefGoogle Scholar
  63. Luzzo, D. A., Hasper, P., Albert, K. A., Bibby, M. A., & Martinelli Jr., E. A. (1999). Effects of self-efficacy-enhancing interventions on the math/science self-efficacy and career interests, goals, and actions of career undecided college students. Journal of Counseling Psychology, 46(2), 233–243. doi: 10.1037//0022-0167.46.2.233.CrossRefGoogle Scholar
  64. Lynch, J. (2002). Parents’ self-efficacy beliefs, parents’ gender, children’s reader self-perceptions, reading achievement and gender. Journal of Research in Reading, 25(1), 54–67. doi: 10.1111/1467-9817.00158.CrossRefGoogle Scholar
  65. Lytton, H., & Romney, D. M. (1991). Parents’ differential socialization of boys and girls: a meta-analysis. Psychological Bulletin, 109(2), 267–296. doi: 10.1037/0033-2909.109.2.267.CrossRefGoogle Scholar
  66. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford: Stanford University Press.Google Scholar
  67. Machin, S., & Pekkarinen, T. (2008). Global sex differences in test score variability. Science, 322(5906), 1331–1332. doi: 10.1126/science.1162573.CrossRefGoogle Scholar
  68. Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM country comparisons : international comparisons of science, technology, engineering and mathematics (STEM) education. Melbourne: Australian Council of Learned Academies.Google Scholar
  69. Martin, C. L., & Ruble, D. N. (2004). Children’s search for gender cues: cognitive perspectives on gender development. Current Directions in Psychological Science, 13(2), 67–70. doi: 10.1111/j.0963-7214.2004.00276.x.CrossRefGoogle Scholar
  70. Martin, M. O., & Mullis, I. V. S. (2012). Methods and procedures in TIMSS and PIRLS 2011. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  71. Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science, 330(6008), 1234–1237. doi: 10.1126/science.1195996.CrossRefGoogle Scholar
  72. Mullis, I. V., Martin, M. O., & Gonzalez, E. J. (2000). TIMSS 1999: International Mathematics Report: Findings from IEA’s repeat of the Third International Mathematics and Science Study at the eighth grade: International Study Center.Google Scholar
  73. National Science Foundation (2011). Women, minorities, and persons with disabilities in science and engineering: 2011. National Science Foundation, http://www.nsf.gov/statistics/wmpd/pdf/wmpd2011.pdf
  74. National Science Foundation (2017). Women, minorities, and persons with disabilities in science and engineering: 2017. National Science Foundation. https://www.nsf.gov/statistics/2017/nsf17310/
  75. Neuschmidt, O., Barth, J., & Hastedt, D. (2008). Trends in gender differences in mathematics and science (TIMSS 1995–2003). Studies in Educational Evaluation, 34(2), 56–72. doi: 10.1016/j.stueduc.2008.04.002.CrossRefGoogle Scholar
  76. Newcombe, N. S., & Frick, A. (2010). Early education for spatial intelligence: why, what, and how. Mind, Brain, and Education, 4(3), 102–111. doi: 10.1111/j.1751-228X.2010.01089.x.CrossRefGoogle Scholar
  77. Newcombe, N. S., Ambady, N., Eccles, J. S., Gomez, L., Klahr, D., Linn, M., et al. (2009). Psychology’s role in mathematics and science education. American Psychologist, 64(6), 538–550. doi: 10.1037/a0014813.CrossRefGoogle Scholar
  78. Nguyen, H.-H. D., & Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. Journal of Applied Psychology, 93(6), 1314–1334. doi: 10.1037/a0012702.CrossRefGoogle Scholar
  79. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math= male, me= female, therefore math≠ me. Journal of Personality and Social Psychology, 83(1), 44–59. doi: 10.1037//0022-3514.83.1.44.CrossRefGoogle Scholar
  80. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106(26), 10593–10597. doi: 10.1073/pnas.0809921106.CrossRefGoogle Scholar
  81. Nuttall, R. L., Casey, M. B., & Pezaris, E. (2005). Spatial ability as a mediator of gender differences on mathematics tests: a biological-environmental framework. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: an integrative psychological approach (pp. 121–142). Cambridge: Cambridge University Press.Google Scholar
  82. OECD (2011). Education at a Glance 2011: OECD Indicators. Organisation for Economic Co-Operation and Development. http://www.oecd-ilibrary.org/education/education-at-a-glance-2011_eag-2011-en
  83. OECD (2014). Are boys and girls equally prepared for life? Organisation for Economic Co-Operation and Development. http://www.oecd.org/pisa/pisaproducts/PIF-2014-gender-international-version.pdf.
  84. OECD (2016). PISA 2015 results—Excellence and Equity in Education. Paris: OECD Publishing.Google Scholar
  85. Priess, H. A., & Hyde, J. S. (2010). Gender and academic abilities and preferences. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 297–316). New York: Springer.CrossRefGoogle Scholar
  86. Reilly, D. (2012). Gender, culture and sex-typed cognitive abilities. PloS One, 7(7), e39904. doi: 10.1371/journal.pone.0039904.CrossRefGoogle Scholar
  87. Reilly, D., Neumann, D. L., & Andrews, G. (2015). Sex differences in mathematics and science: a meta-analysis of National Assessment of Educational Progress assessments. Journal of Educational Psychology, 107(3), 645–662. doi: 10.1037/edu0000012.CrossRefGoogle Scholar
  88. Reilly, D., Neumann, D. L., & Andrews, G. (2017). Gender differences in spatial ability: implications for STEM education and approaches to reducing the gender gap for parents and educators. In M. S. Khine (Ed.), Visual-spatial ability: transforming research into practice (pp. 195–224). Switzerland: Springer International.Google Scholar
  89. Riegle-Crumb, C., Farkas, G., & Muller, C. (2006). The role of gender and friendship in advanced course taking. Sociology of Education, 79(3), 206–228. doi: 10.1177/003804070607900302.CrossRefGoogle Scholar
  90. Riegle-Crumb, C., Moore, C., & Ramos-Wada, A. (2011). Who wants to have a career in science or math? Exploring adolescents’ future aspirations by gender and race/ethnicity. Science Education, 95(3), 458–476. doi: 10.1002/sce.20431.CrossRefGoogle Scholar
  91. Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52(1), 59–82. doi: 10.1146/annurev.psych.52.1.59.CrossRefGoogle Scholar
  92. Rozek, C. S., Hyde, J. S., Svoboda, R. C., Hulleman, C. S., & Harackiewicz, J. M. (2014). Gender differences in the effects of a utility-value intervention to help parents motivate adolescents in mathematics and science. Journal of Educational Psychology, 107(1), 195–206. doi: 10.1037/a0036981.CrossRefGoogle Scholar
  93. Sander, E., Endepohls-Ulpe, M., & Quaiser-Pohl, C. (2016). Adult education in science, technology, engineering and mathematics under the gender aspect—a critical overview of programs and strategies in Germany. In M. Maksimović, J. Ostrouch-Kamińska, K. Popović, & A. Bulajić (Eds.), Contemporary issues and perspectives on gender research in adult education (pp. 211–223). Belgrade: Institute for Pedagogy and Andragogy.Google Scholar
  94. Shapiro, J., & Williams, A. M. (2012). The role of stereotype threats in undermining girls’ and women’s performance and interest in STEM fields. Sex Roles, 66(3–4), 175–183. doi: 10.1007/s11199-011-0051-0.CrossRefGoogle Scholar
  95. Shields, S. A. (1982). The variability hypothesis: the history of a biological model of sex differences in intelligence. Signs, 7(4), 769–797. doi: 10.2307/3173639.CrossRefGoogle Scholar
  96. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2005). Parents’ socializing behavior and children’s participation in math, science, and computer out-of-school activities. Applied Developmental Science, 9(1), 14–30. doi: 10.1207/s1532480xads0901_3.CrossRefGoogle Scholar
  97. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: a longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83. doi: 10.1037/0012-1649.42.1.70.CrossRefGoogle Scholar
  98. Smeding, A. (2012). Women in science, technology, Engineering,and mathematics (STEM): an investigation of their implicit gender stereotypes and stereotypes’ connectedness to math performance. Sex Roles, 67(11–12), 617–629. doi: 10.1007/s11199-012-0209-4.CrossRefGoogle Scholar
  99. Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: a critical review. American Psychologist, 60(9), 950–958. doi: 10.1037/0003-066X.60.9.950.CrossRefGoogle Scholar
  100. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28. doi: 10.1006/jesp.1998.1373.CrossRefGoogle Scholar
  101. Steele, C. M. (1997). A threat in the air: how stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629. doi: 10.1037/0003-066X.52.6.613.CrossRefGoogle Scholar
  102. Stoeger, H., Duan, X., Schirner, S., Greindl, T., & Ziegler, A. (2013). The effectiveness of a one-year online mentoring program for girls in STEM. Computers & Education, 69, 408–418. doi: 10.1016/j.compedu.2013.07.032.CrossRefGoogle Scholar
  103. Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: a meta-analysis of sex differences in interests. Psychological Bulletin, 135(6), 859–884. doi: 10.1037/a0017364.CrossRefGoogle Scholar
  104. Sugimoto, C., Larivière, V., Ni, C., Gingras, Y., & Cronin, B. (2013). Global gender disparities in science. Nature, 504(7479), 211–213. doi: 10.1038/504211a.CrossRefGoogle Scholar
  105. Thompson, S. G., & Higgins, J. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21(11), 1559–1573. doi: 10.1002/sim.1187.CrossRefGoogle Scholar
  106. UNESCO (2011). Fact Sheet: Women in Science (2011). UNESCO Institute for Statistics. http://www.uis.unesco.org/ScienceTechnology/Documents/fs14-women-science-2011-en.pdf
  107. Unger, R. K. (1979). Towards a redefinition of sex and gender. American Psychologist, 34(11), 1085–1094. doi: 10.1037/0003-066X.34.11.1085.CrossRefGoogle Scholar
  108. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2013a). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi: 10.1037/a0028446.CrossRefGoogle Scholar
  109. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013b). Exploring and enhancing spatial thinking links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. doi: 10.1177/0963721413484756.CrossRefGoogle Scholar
  110. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. doi: 10.1037//0033-2909.117.2.250.CrossRefGoogle Scholar
  111. Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: a 30 year examination. Intelligence, 38(4), 412–423. doi: 10.1016/j.intell.2010.04.006.CrossRefGoogle Scholar
  112. Walters, J. (2010). Recasting title IX: addressing gender equity in the science, technology, engineering, and mathematics professoriate. Review of Policy Research, 27(3), 317–332. doi: 10.1111/j.1541-1338.2010.00444.x.CrossRefGoogle Scholar
  113. Weinburgh, M. (1995). Gender differences in student attitudes toward science: a meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32(4), 387–398. doi: 10.1002/tea.3660320407.CrossRefGoogle Scholar
  114. Wilkinson, L. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54(8), 594–604. doi: 10.1037/0003-066X.54.8.594.CrossRefGoogle Scholar
  115. Wood, W., & Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men: implications for the origins of sex differences. Psychological Bulletin, 128(5), 699–727. doi: 10.1037//0033-2909.128.5.699.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Applied PsychologyGold CoastAustralia
  2. 2.Behavioural Basis of Health ProgramMenzies Health InstituteGold CoastAustralia

Personalised recommendations