Research in Science Education

, Volume 49, Issue 2, pp 437–463 | Cite as

Investigating How German Biology Teachers Use Three-Dimensional Physical Models in Classroom Instruction: a Video Study

  • Sonja WernerEmail author
  • Christian Förtsch
  • William Boone
  • Lena von Kotzebue
  • Birgit J. Neuhaus


To obtain a general understanding of science, model use as part of National Education Standards is important for instruction. Model use can be characterized by three aspects: (1) the characteristics of the model, (2) the integration of the model into instruction, and (3) the use of models to foster scientific reasoning. However, there were no empirical results describing the implementation of National Education Standards in science instruction concerning the use of models. Therefore, the present study investigated the implementation of different aspects of model use in German biology instruction. Two biology lessons on the topic neurobiology in grade nine of 32 biology teachers were videotaped (N = 64 videos). These lessons were analysed using an event-based coding manual according to three aspects of model described above. Rasch analysis of the coded categories was conducted and showed reliable measurement. In the first analysis, we identified 68 lessons where a total of 112 different models were used. The in-depth analysis showed that special aspects of an elaborate model use according to several categories of scientific reasoning were rarely implemented in biology instruction. A critical reflection of the used model (N = 25 models; 22.3%) and models to demonstrate scientific reasoning (N = 26 models; 23.2%) were seldom observed. Our findings suggest that pre-service biology teacher education and professional development initiatives in Germany have to focus on both aspects.


Models Scientific reasoning Biology instruction Quantitative video analysis 



We are grateful to the German Federal Ministry of Education and Research for supporting our study.


  1. Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: the MoDeLS fifth-grade approach and finding. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling: cognitive tools for scientific enquiry (pp. 195–220). Heidelberg: Springer.CrossRefGoogle Scholar
  2. Baumert, J., Bos, W., & Lehmann, R. (eds.). (2000). TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn [TIMSS/III. Third International Mathematics and Science Study: mathematics and science education at the end of the school career]. Opladen: Leske + Budrich.Google Scholar
  3. Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., et al. (Eds.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich [PISA 2000: basic competences of students in an international comparison]. Opladen: Leske + Budrich.Google Scholar
  4. Bond, T., & Fox, C. (2007). Applying the Rasch model: fundamental measurement in the human sciences. Mahwah, NJ: LEA.Google Scholar
  5. Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer.Google Scholar
  6. Chi, M. T. H. (2009). Active-constructive-interactive: a conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73–105.CrossRefGoogle Scholar
  7. Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195–212.CrossRefGoogle Scholar
  8. Clausen, M. (2002). Unterrichtsqualität: Eine Frage der Perspektive? [Instructional quality: a question of perspective?]. Waxmann: Münster.Google Scholar
  9. Coll, R. K., & Lajium, D. (2011). Modeling and the future of science learning. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling: cognitive tools for scientific enquiry (pp. 3–22). Heidelberg: Springer.CrossRefGoogle Scholar
  10. Collin, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: structures and strategies for guiding inquiry. Educational Psychologist, 28(1), 25–42.CrossRefGoogle Scholar
  11. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684. doi: 10.1016/S0022-5371(72)80001-X.CrossRefGoogle Scholar
  12. Crawford, B., & Cullin, M. (2005). Dynamic assessments of pre-service teachers’ knowledge of models and modelling. In K. Boersma, H. Eijkelhof, M. Goedhart, & O. Jong (Eds.), Research and the quality of science education (pp. 309–323). Dordrecht: Springer.CrossRefGoogle Scholar
  13. Dagher, Z. R. (1995). Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(3), 259–270.CrossRefGoogle Scholar
  14. Danusso, L., Testa, I., Sassi, E., & Vicentini, M. (2008). Teachers’ ideas about scientific models and modelling. In E. van den Berg, T. Ellermeijer, & O. Slooten (Eds.), Modelling in physics and physics education (pp. 952–957). Amsterdam: University of Amsterdam.Google Scholar
  15. Department for Education and Skills & Qualification and Curriculum Authority. (2004). Science—The National Curriculum for England. London: HMSO.Google Scholar
  16. Ergönenc, J., Neumann, K., & Fischer, H. E. (2014). The impact of pedagogical content knowledge on cognitive activation and students learning. In H. E. Fischer, P. Labudde, K. Neumann, & J. Viiri (Eds.), Quality of instruction in physics (pp. 145–160). Münster: Waxmann.Google Scholar
  17. Fischer, H. E., Glemnitz, I., Kauertz, A., & Sumfleth, E. (2007). Auf Wissen aufbauen—kumulatives Lernen in Chemie und Physik [To build on knowledge—cumulative learning in chemistry and physics]. In G. Kircher & Häußler (Eds.), Physikdidaktik, Theorie und praxis [Physics education, theory and teaching practice] (pp. 657–678). Berlin, Heidelberg, New York: Springer.Google Scholar
  18. Fleige, J., Seegers, A., Upmeier zu Belzen, A., & Krüger, D. (2012a). Förderung von Modellkompetenz im Biologieunterricht. [Fostering model competence in biology education]. Der mathematische und naturwissenschaftliche Unterricht, 65(1), 19–28.Google Scholar
  19. Fleige, J., Seegers, A., Upmeier zu Belzen, A., & Krüger, D. (2012b). Modellkompetenz im Biologieunterricht Klasse 7–10: Phänomene begreifbar machen - in 11 komplett ausgearbeiteten Unterrichtseinheiten [Model competence in biology instruction grade 7–10: making phenomena tangible—11 complete developed teaching units]. Auer Verlag.Google Scholar
  20. Förtsch, C., Werner, S., Dorfner, T., von Kotzebue, L., & Neuhaus, B. J. (2016a). Effects of cognitive activation in biology lessons on students’ situational interest and achievement. Research in Science Education. doi: 10.1007/s11165-016-9517-y.
  21. Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B. J. (2016b). Effects of biology teachers’ professional knowledge and cognitive activation on students’ achievement. International Journal of Science Education, 38(17), 2642–2666. doi: 10.1080/09500693.2016.1257170.CrossRefGoogle Scholar
  22. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752. doi: 10.1086/425063.CrossRefGoogle Scholar
  23. Gilbert, J., & Boulter, C. (2000). Developing models in science education. Dordrecht: Kluwer.CrossRefGoogle Scholar
  24. Gilbert, J. (1994). Models and modeling: routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.CrossRefGoogle Scholar
  25. Gilbert, J., Boulter, C., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht: Kluwer.CrossRefGoogle Scholar
  26. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–78. doi: 10.1002/tea.3660280107.CrossRefGoogle Scholar
  27. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822. doi: 10.1002/tea.3660280907.CrossRefGoogle Scholar
  28. Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2014). Assessing students’ understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education. doi: 10.1080/09500693.2013.873155.CrossRefGoogle Scholar
  29. Harrison, A. G. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401–435.CrossRefGoogle Scholar
  30. Helmke. (2003). Unterrichtsevaluation [Evaluating educational practice]. Schulmanagement, 1, 8–11.Google Scholar
  31. Henze, I., & Van Driel, J. H. (2011). Science teachers’ knowledge about learning and teaching models and modeling in public understanding of science. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling: cognitive tool for scientific inquiry (pp. 239–261). Heidelberg: Springer.CrossRefGoogle Scholar
  32. Henze, I., van Driel, J. H., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37, 99–122.CrossRefGoogle Scholar
  33. Hodson, D. (1992). In search of meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.CrossRefGoogle Scholar
  34. Ingham, A., & Gilbert, J. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13, 193–202.CrossRefGoogle Scholar
  35. Justi, R. S., & Gilbert, J. K. (2002a). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387. doi: 10.1080/09500690110110142.CrossRefGoogle Scholar
  36. Justi, R. S., & Gilbert, J. K. (2002b). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273–1292.CrossRefGoogle Scholar
  37. Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. doi: 10.1080/0950069032000070324.CrossRefGoogle Scholar
  38. Justi, R., & van Driel, J. H. (2005). A Case Study of the Development of a Beginning Chemistry Teacher's Knowledge about Models and Modelling. Research in Science Education, 35(2-3), 197–219. doi: 10.1007/s11165-004-7583-z.CrossRefGoogle Scholar
  39. Jüttner, M., Boone, W., Park, S., & Neuhaus, B. J. (2013). Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educational Assessment, Evaluation and Accountability, 25(1), 45-67. doi: 10.1007/s11092-013-9157-y
  40. Kauertz, A., Fischer, H. E., Mayer, J., Sumfleth, E., & Walpuski, M. (2010). Standardbezogene Kompetenzmodellierung in den Naturwissenschaften der Sekundarstufe I [Modeling competence according to standards for science education in secondary schools]. Zeitschrift für Didaktik der Naturwissenschaften, 12, 135–153.Google Scholar
  41. Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22, 535–560.CrossRefGoogle Scholar
  42. Klahr. (2000). Exploring science: the cognition and development of discovery processes. Cambridge, MA: MIT Press.Google Scholar
  43. Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [Conference of the Ministers of Education in Germany]. (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004 [Educational standards for the subject biology for intermediate-level education. By order of 16 December 2004]. München: Wolters Kluwer.Google Scholar
  44. Krajcik, J., & Merritt, J. (2012). Engaging students in scientific practices: what does constructing and revising models look like in the science classroom? The Science Teacher, 79(3), 38–41.Google Scholar
  45. Krell, M. (2012). Using polytomous IRT models to evaluate theoretical levels of understanding models and modeling in biology education. Science Education Review Letters, Theoretical Letters, 2012, 1–5. Retrieved from edoc-server. (urn:nbn:de:kobv:11–100205516).Google Scholar
  46. Krell, M., & Krüger, D. (2013). Wie werden Modelle im Biologieunterricht eingesetzt?. [How models are used in biology instruction]. Erkenntnisweg Biologiedidaktik, 12, 9–26.Google Scholar
  47. Kremer, K., Fischer, H. E., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standards-based learning outcomes in science education: perspectives from the German project ESNaS. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Make it tangible. Learning outcomes in science education. Münster: Waxmann.Google Scholar
  48. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project. New York: Springer.Google Scholar
  49. Lachmayer, S., Nerdel, C., & Prechtl, H. (2007). Modellierung kognitiver Fähigkeiten beim Umgang mit Diagrammen im naturwissenschaftlichen Unterricht [Modelling of cognitive abilities regarding the handling of graphs in science education]. Zeitschrift für Didaktik der Naturwissenschaften, 13, 145–160.Google Scholar
  50. Leibold, K., & Klautke, S. (1999). Lerneffektivität des Einsatzes gegenständlicher Modelle in Biologieleistungskursen des gymnasiums [Learning effectiveness of using representational models in biological advanced courses at secondary school]. Zeitschrift für Didaktik der Naturwissenschaften, 5(1), 3–23.Google Scholar
  51. Lenske, G., Thillmann, H., Wirth, J., Dicke, T., & Leutner, D. (2015). Evaluation eines Tests zur Erfassung des pädagogisch-psychologischen Professionswissens von Lehrkräften [Evaluation of an test capturing pedagogical-psychological knowledge of teachers]. Zeitschrift für Erziehungswissenschaft, 18(2), 225-245. doi: 10.1007/s11618-015-0627-5
  52. Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635–679.CrossRefGoogle Scholar
  53. Linacre, J. M. (2012). A user’s guide to Winsteps/Ministep: Rasch-model computer programs. Retrieved from
  54. Linacre, M. (1994). Sample size and item calibration stability. Rasch Measurement Transactions, 7(4), 328.Google Scholar
  55. Mahr, B. (2009). Information science and the logic of models. Software & Systems Modeling, 8, 365–383.CrossRefGoogle Scholar
  56. Mayer, M. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen [Inquiry as Scientific Problem Solving]. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung (pp. 177–186). Heidelberg: Springer.CrossRefGoogle Scholar
  57. Meisert, A. (2008). Vom Modelwissen zum Modelverständnis [From knowing models to an understanding of models]. Zeitschrift für Didaktik der Naturwissenschaften, 14, 243–261.Google Scholar
  58. National Research Council. (1996). National Science Education Standards. Washington, DC:Google Scholar
  59. National Academies Research Council (2012). A framework for K–12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.Google Scholar
  60. Nehring, A., K. H. Nowak, R. Tiemann, & Upmeier zu Belzen, A. (2011). VerE-Studie Vernetzung der Erkenntnisgewinnung zwischen Chemie und Biologieunterricht [Crosslinking scientific inquiry between biology and chemistry lessons]. In D. Höttecke. (Ed,), Gesellschaft für Didaktik der Chemie und Physik: Naturwissenschaftliche Bildung als Beitrag zur Gestaltung partizipativer Demokratie [Association of chemistry and physics education: scientific education as contribution to create a participative democracy], (pp. 510–512). Berlin: LIT.Google Scholar
  61. Lead States, N. G. S. S. (2013). Next generation science standards: for states, by states. Washington, D.C.: National Academies Press.Google Scholar
  62. Nowak, K. H., Nehring, A., Tiemann, R., & Upmeier zu Belzen, A. (2013). Assessing students‘ abilities in processes of scientific inquiry in biology using a paper-and-pencil test. Journal of Biological Education, 47(3), 182–188.CrossRefGoogle Scholar
  63. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: an overview. International Journal of Science Education, 33(8), 1109–1130.CrossRefGoogle Scholar
  64. Pauli, C. (2012). Merkmale guter Unterrichtsqualität im mathematisch-naturwissenschaftlichen Unterricht aus der Perspektive von Lernenden und Lehrpersonen [Features of good instructional quality in mathematics and science instruction from the perspective of learners and teachers]. In Lazarides & Ittel. Differenzierung im mathematisch-naturwissenschaftlichen Unterricht [Differentiation in mathematics and science instruction]. pp.13–28. Bad Heilbrunn: Verlag Julius Klinkhardt.Google Scholar
  65. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511.CrossRefGoogle Scholar
  66. Rimmele, R. (2012). Videograph (version [Computer software]Google Scholar
  67. Schwarz, C. V., & White, B. Y. (2005). Metamodeling Knowledge: Developing Students' Understanding of Scientific Modeling. Cognition and Instruction, 23(2), 165–205. doi: 10.1207/s1532690xci2302_1.CrossRefGoogle Scholar
  68. Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. doi: 10.1002/tea.20311.CrossRefGoogle Scholar
  69. Seidel, T., Prenzel, M., & Kobarg, M. (Eds.). (2005). How to run a video study: technical report of the IPN video study. Münster: Waxmann.Google Scholar
  70. Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  71. Sins, P. H. M., Savelsbergh, E. R., van Joolingen, W. R., & van Hout-Wolters, B. H. (2009). The relation between students' epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205–1229. doi: 10.1080/09500690802192181.CrossRefGoogle Scholar
  72. Smith, C., Houghton, C., & Hennessy, G. (2000). Sixth-grade students' epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349–422.CrossRefGoogle Scholar
  73. Steinbuch, K. (1977). Denken in Modellen [Thinking in models]. In G. Schaefer, G. Trommer, & K. Wenk (Eds.), Denken in Modellen [Thinking in models] (pp. 10–17). Braunschweig: Westermann.Google Scholar
  74. Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515–565). Washington, DC: National Research Council.Google Scholar
  75. Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295–312.CrossRefGoogle Scholar
  76. Terzer, E. (2013). Modellkompetenz im Kontext Biologieunterricht—Empirische Beschreibung von Modellkompetenz mithilfe von Multiple-Choice Items [Model competence in the context of biology education—empirical description of model competence using multiple-choice items]. Doctoral dissertation. Retrieved from edoc-server. (urn:nbn:de:kobv:11–100206767).Google Scholar
  77. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. doi: 10.1080/09500690110066485.CrossRefGoogle Scholar
  78. Treagust, D. F., Duit, R., Joslin, P., & Lindauer, I. (1992). Science teachers’ use of analogies: Observations from classroom practice. International Journal of Science Education, 14(4), 413–422.CrossRefGoogle Scholar
  79. Upmeier zu Belzen, A. (2013). Modelle [Models]. In H. Großengießer, U. Harms, & U. Kattmann (Eds.), Fachdidaktik Biologie [Biology education] (pp. 325–334). Freising: Aulis Verlag.Google Scholar
  80. Upmeier zu Belzen, A., & Krüger, D. (2010). Modellkompetenz im Biologieunterricht [Model competence in biology education]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 41–57.Google Scholar
  81. Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153. doi: 10.1080/095006999290110.
  82. Van Driel, J. H., & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255–1272.CrossRefGoogle Scholar
  83. van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.CrossRefGoogle Scholar
  84. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45–69.CrossRefGoogle Scholar
  85. Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.Google Scholar
  86. Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. J. (2014). The effect of knowledge linking levels in biology lessons upon students’ knowledge structure. International Journal of Science and Mathematics Education, 12(1). doi: 10.1007/s10763-012-9390-8.
  87. Wellnitz, N., Fischer, H. E., Kauertz, A., Mayer, J., Neumann, I., Pant, H. A., et al. (2012). Evaluation der Bildungsstandards – Eine fächerübergreifende Testkonzeption für den Kompetenzbereich Erkenntnisgewinnung [Evaluation of the National Educational Standards: an interdisciplinary test design for the competence area acquirement of knowledge]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 262–291.Google Scholar
  88. White, B. Y., Collins, A., & Frederiksen, J. R. (2011). The nature of scientific meta-knowledge. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling: cognitive tools for scientific enquiry (pp. 3–22). Heidelberg: Springer.Google Scholar
  89. Wirtz, M., & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität [Interrater aggreement and interrater reliability]. Göttingen: Hogrefe.Google Scholar
  90. Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Rasch measurement. Chicago: MESA Press.Google Scholar
  91. Wüsten, S. (2010). Allgemeine und fachspezifische Merkmale der Unterrichtsqualität im Fach Biologie: Eine video- und Interventionsstudie [General and content-specific features of instructional quality in the subject biology: a video and intervention study]. Berlin: Logos.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sonja Werner
    • 1
    Email author
  • Christian Förtsch
    • 1
  • William Boone
    • 2
  • Lena von Kotzebue
    • 1
  • Birgit J. Neuhaus
    • 1
  1. 1.Biology Education, Department of Biology ILudwig-Maximilians University MunichMunichGermany
  2. 2.Department of Educational PsychologyMiami UniversityOxfordUSA

Personalised recommendations