Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A simple sol–gel hydrothermal method for the synthesis of defective TiO2 nanocrystals with excellent visible-light photocatalytic activity

  • 15 Accesses

Abstract

Defective TiO2 nanocrystals (D-TiO2) were synthesized by a simple, mild and green sol–gel hydrothermal method. The as-prepared sample possesses a high specific surface area of 173.6 m2/g and high crystallinity of anatase phase without any calcination. Raman, EPR and XPS spectrum confirmed the existence of oxygen vacancies in D-TiO2. These oxygen vacancies provide D-TiO2 with visible-light photocatalytic activity, as demonstrated by the degradation of Rhodamine B (RhB). The degradation pathway of RhB over D-TiO2 was investigated, and the possible photocatalytic mechanism was also proposed. The excellent photocatalytic property of D-TiO2 was mainly attributed to the synergistic effect between the high surface area and abundant oxygen vacancies. This work presents a new route to synthesize high-performance visible-light-responsive TiO2 photocatalyst.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)

  2. 2.

    X. Cheng, Y. Zhang, H. Hu, M. Shang, Y. Bi, Nanoscale 10, 3644 (2018)

  3. 3.

    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

  4. 4.

    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B-Environ. 125, 331 (2012)

  5. 5.

    J.Y. Lei, Y. Chen, F. Shen, L.Z. Wang, Y.D. Liu, J.L. Zhang, J. Alloys Compd. 631, 328 (2015)

  6. 6.

    J. Yin, Z. Xing, J. Kuang, Z. Li, M. Li, J. Jiang, S. Tan, Q. Zhu, W. Zhou, J. Alloys Compd. 750, 659 (2018)

  7. 7.

    Y. Zhou, Y. Liu, P. Liu, W. Zhang, M. Xing, J. Zhang, Appl. Catal. B-Environ. 170–171, 66 (2015)

  8. 8.

    Y.G. Xu, J. Liu, M. Xie, L.Q. Jing, H. Xu, X.J. She, H.M. Li, J.M. Xie, Chem. Eng. J. 357, 487 (2019)

  9. 9.

    J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mat. 14, 3808 (2002)

  10. 10.

    K. Umar, M.N.M. Ibrahim, A. Ahmad, M. Rafatullah, Res. Chem. Intermed. 45, 2927 (2019)

  11. 11.

    C.C. Dong, J. Liu, M.Y. Xing, J.L. Zhang, Res. Chem. Intermed. 44, 7079 (2018)

  12. 12.

    D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805 (2009)

  13. 13.

    C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev. 39, 4206 (2010)

  14. 14.

    G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20, 831 (2010)

  15. 15.

    C. Chen, W.M. Cai, M.C. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, Y.J. Feng, ACS Nano 4, 6425 (2010)

  16. 16.

    F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, J. Am. Chem. Soc. 132, 11856 (2010)

  17. 17.

    F. Li, T. Han, H. Wang, X. Zheng, J. Wan, B. Ni, J. Mater. Res. 32, 1563 (2017)

  18. 18.

    S.M. Liu, L. Zhou, J.L. Zhang, J.Y. Lei, Chem.-Asian J. 14, 322 (2019)

  19. 19.

    Q.Y. Yi, Y. Zhou, M.Y. Xing, J.L. Zhang, Res. Chem. Intermed. 42, 4181 (2016)

  20. 20.

    Q.P. Wu, F. Huang, M.S. Zhao, J. Xu, J.C. Zhou, Y.S. Wang, Nano Energy 24, 63 (2016)

  21. 21.

    M. Wajid Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, C. Wang, Sci. Rep. 5, 15804 (2015)

  22. 22.

    J. Jiang, Z. Xing, M. Li, Z. Li, J. Yin, J. Kuang, J. Zou, Q. Zhu, W. Zhou, J. Colloid Interface Sci. 521, 102 (2018)

  23. 23.

    Y. Cao, Z. Xing, M. Hu, Z. Li, X. Wu, T. Zhao, Z. Xiu, S. Yang, W. Zhou, J. Catal. 356, 246 (2017)

  24. 24.

    D.Y. Qi, L.J. Lu, Z.H. Xi, L.Z. Wang, J.L. Zhang, Appl. Catal. B-Environ. 160, 621 (2014)

  25. 25.

    L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, Y. Li, ACS Catal. 6, 1097 (2016)

  26. 26.

    Q. Hu, J. Li, Q. Li, G. Wang, J. Huang, X. Huang, Dalton Trans. 47, 4478 (2018)

  27. 27.

    A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 134, 7600 (2012)

  28. 28.

    H.Q. Tan, Z. Zhao, M. Niu, C.Y. Mao, D.P. Cao, D.J. Cheng, P.Y. Feng, Z.C. Sun, Nanoscale 6, 10216 (2014)

  29. 29.

    Z.H. Zhang, M.N. Hedhili, H.B. Zhu, P. Wang, Phys. Chem. Chem. Phys. 15, 15637 (2013)

  30. 30.

    Z. Wang, C.Y. Yang, T.Q. Lin, H. Yin, P. Chen, D.Y. Wan, F.F. Xu, F.Q. Huang, J.H. Lin, X.M. Xie, M.H. Jiang, Adv. Funct. Mater. 23, 5444 (2013)

  31. 31.

    H. He, D. Huang, W. Pang, D. Sun, Q. Wang, Y. Tang, X. Ji, Z. Guo, H. Wang, Adv. Mater. 30, 1801013 (2018)

  32. 32.

    T.P. Chou, Q.F. Zhang, B. Russo, G.E. Fryxell, G.Z. Cao, J. Phys. Chem. C 111, 6296 (2007)

  33. 33.

    J.T. Xi, Q.F. Zhang, K. Park, Y.M. Sun, G.Z. Cao, Electrochim. Acta 56, 1960 (2011)

  34. 34.

    C.X. Sun, P. He, G.F. Pan, Y.X. Miao, T. Zhang, L. Zhang, Res. Chem. Intermed. 44, 2607 (2018)

  35. 35.

    A.Q. Deng, Y.F. Zhu, Res. Chem. Intermed. 44, 4227 (2018)

  36. 36.

    Z. Huang, Z. Gao, S. Gao, Q. Wang, Z. Wang, B. Huang, Y. Dai, Chin. J. Catal. 38, 821 (2017)

  37. 37.

    P. Ran, L. Jiang, X. Li, P. Zuo, B. Li, X. Li, X. Cheng, J. Zhang, Y. Lu, J. Mater. Chem. A 6, 16430 (2018)

  38. 38.

    J. Wang, P. Yang, B. Huang, Appl. Surf. Sci. 356, 391 (2015)

  39. 39.

    M. Zhang, Q.J. Pei, W.D. Chen, L. Liu, T. He, P. Chen, Rsc Adv. 7, 4306 (2017)

  40. 40.

    L.S. Vlasenko, G.D. Watkins, Phys. Rev. B 72, 035203 (2005)

  41. 41.

    H. Yang, L. Mei, P. Wang, J. Genereux, Y. Wang, B. Yi, C. Au, L. Dang, P. Feng, RSC Adv. 7, 45721 (2017)

  42. 42.

    G. Zhu, Y. Shan, T. Lin, W. Zhao, J. Xu, Z. Tian, H. Zhang, C. Zheng, F. Huang, Nanoscale 8, 4705 (2016)

  43. 43.

    J. Shu, Z. Qiu, S. Lv, K. Zhang, D. Tang, Anal. Chem. 90, 2425 (2018)

  44. 44.

    X. Liu, Z. Xing, Y. Zhang, Z. Li, X. Wu, S. Tan, X. Yu, Q. Zhu, W. Zhou, Appl. Catal. B-Environ. 201, 119 (2017)

  45. 45.

    M.F. Hou, L. Liao, W.D. Zhang, X.Y. Tang, H.F. Wan, G.C. Yin, Chemosphere 83, 1279 (2011)

  46. 46.

    X.F. Hu, T. Mohamood, W.H. Ma, C.C. Chen, J.C. Zhao, J. Phys. Chem. B 110, 26012 (2006)

  47. 47.

    N.H. Linh, T.Q. Nguyen, W.A. Dino, H. Kasai, Surf. Sci. 633, 38 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21703288), the Fundamental Research Funds for the Central Universities (2632019PY02), the Young Teacher Research Funds from College of Science, China Pharmaceutical University (2018CSYT009), and the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China (KJQN201801226).

Author information

Correspondence to Ying Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Zhang, Y., Chen, X. et al. A simple sol–gel hydrothermal method for the synthesis of defective TiO2 nanocrystals with excellent visible-light photocatalytic activity. Res Chem Intermed (2020). https://doi.org/10.1007/s11164-020-04087-x

Download citation

Keywords

  • Defective TiO2
  • Sol–gel hydrothermal
  • Oxygen vacancies
  • Photocatalysis