Advertisement

A reusable reduced graphene oxide-cobalt oxide nanocomposite with excellent yield as adsorbent for determination trace-level of brilliant green in environmental water samples

  • 12 Accesses

Abstract

In view of large-scale production, usage and toxic nature, the synthetic dyes are a very significant category of pollutants. This work reports the preparation and application of reduced graphene oxide/cobalt oxide (rGO/Co3O4) nanocomposite as selective and regenerable magnetite nanosorbent for the preconcentration and determination of brilliant green (BG) as a synthetic dye by UV–Vis spectrophotometry. The properties of the rGO/Co3O4 nanocomposite were characterized by UV–Vis spectrophotometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer and inductively coupled plasma optical emission spectrometry. Magnetic dispersive microsolid phase extraction (MD-μSPE) as a green, simple and sensitive method has been proposed for the separation and determination of trace quantities of BG. The experimental parameters affecting the MD-μSPE efficiency for the target analytes such as sample pH, brilliant green concentration, adsorbent dose and sonication time were investigated and optimized by central composite design coupled with desirability function approach. Under the optimized conditions, the detection limit, relative standard deviation and enrichment factor were 2.6 ng mL−1, 3.34% (n = 5) and 24.5, respectively. Finally, the applicability of the proposed method was successfully evaluated by the determination of trace amounts of BG in fish breeding pool and tap water samples.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    T.I. Tikhomirova, G.R. Ramazanova, V.V. Apyari, Food Chem. 221, 351 (2017)

  2. 2.

    S. Afroze, T.K. Sen, H.M. Ang, Res. Chem. Intermed. 42, 2343 (2016)

  3. 3.

    F.U. Nigiz, Res. Chem. Intermed. 45, 3739 (2019)

  4. 4.

    P. Taneja, S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Mater. Chem. Phys. 211, 335 (2018)

  5. 5.

    Z. Es’haghi, M.A.K. Khooni, T. Heidari, Spectrochim. Acta A 79, 603 (2011)

  6. 6.

    M. Saraji, H. Yousefi, J. Hazard. Mater. 167, 1152 (2009)

  7. 7.

    H. Bagheri, P. Khanipour, S. Asgari, Anal. Chim. Acta. 934, 88 (2016)

  8. 8.

    M. Wang, L. Wu, Q. Hu, Y. Yang, Environ. Sci. Pollut. R. 25, 8340 (2018)

  9. 9.

    W.-K. Li, Y.-P. Shi, TrAC. Trends Anal. Chem. 118, 652 (2019)

  10. 10.

    J.Y. Tian, J.Q. Xu, F. Zhu, T.B. Lu, C.Y. Su, G.F. Ouyang, J. Chromatogr. A 1300, 2 (2013)

  11. 11.

    A. Mehdinia, M. Ramezani, A. Jabbari, Food Chem. 237, 1112 (2017)

  12. 12.

    Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J. Brewer, E. Ansaldo, G. Morris, D. Andreica, A. Amato, Phys. Rev. B 75, 54424 (2007)

  13. 13.

    U. Kumar, A. Shete, A.S. Harle, O. Kasyutich, W. Schwarzacher, A. Pundle, P. Poddar, Chem. Mater. 20, 1484 (2008)

  14. 14.

    H. Kim, D. Won Park, H. Chul Woo, J. Shik Chung, Appl. Catal. B-Environ. 19, 233 (1998)

  15. 15.

    F. Åvegl, B. Orel, P. Bukovec, K. Kalcher, M.G. Hutchins, J. Electroanal. Chem. 418, 53 (1996)

  16. 16.

    Y.H. Li, K.L. Huang, D.M. Zeng, S.Q. Liu, Prog. Chem. 22, 2119 (2010)

  17. 17.

    Y. Ichiyanagi, S. Yamada, Polyhedron 24, 2813 (2005)

  18. 18.

    X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, H.J. Fan, Nanotoday 9, 785 (2014)

  19. 19.

    E. Yavuz, Ş. Tokalıoğlu, H. Şahan, Ş. Patat, RSC Adv. 3, 24650 (2013)

  20. 20.

    G. Vinodhkumar, R. Ramya, I. Vetha Potheher, M. Vimalan, A. Cyrac Peter, Res. Chem. Intermed. 45, 3033 (2019)

  21. 21.

    K. Zhang, K. Hong, J.M. Suh, T.H. Lee, O. Kwon, M. Shokouhimehr, H.W. Jang, Res. Chem. Intermed. 45, 599 (2019)

  22. 22.

    F. Sakhaei, E. Salahi, M.E. Olya, I. Mobasherpour, Res. Chem. Intermed. 43, 4063 (2017)

  23. 23.

    N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Procedia. Eng. 184, 469 (2017)

  24. 24.

    V. Panwar, A. Al-Nafiey, A. Addad, B. Sieber, P. Roussel, R. Boukherroub, S.L. Jain, RSC Adv. 5, 88567 (2015)

  25. 25.

    S. Farhadi, K. Pourzare, S. Sadeghinejad, J. Nanostructure Chem. 3, 16 (2013)

  26. 26.

    N. Zhang, J. Shi, S.S. Mao, L. Guo, Chem. Commun. 50, 2002 (2014)

  27. 27.

    I.S. Hosu, Q. Wang, A. Vasilescu, S.F. Peteu, V. Raditoiu, S. Railian, V. Zaitsev, K. Turcheniuk, Q. Wang, M. Li, R. Boukherroub, RSC Adv. 5, 1474 (2015)

  28. 28.

    R. Khani, S. Sobhani, M.H. Beyki, S. Miri, Ecotox. Environ. Safe. 150, 54 (2018)

  29. 29.

    I.M.M. Kenawy, M.M. Eldefrawy, R.M. Eltabey, E.G. Zaki, J. Clean. Prod. 241, 118189 (2019)

  30. 30.

    R. Khani, S. Sobhani, T. Yari, Microchem. J. 146, 471 (2019)

  31. 31.

    M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, V.K. Gupta, Res. Chem. Intermed. 44, 2929 (2018)

  32. 32.

    P.M.B. Chagas, A.A. Caetano, M.A. Rossi, M.A. Gonçalves, T.C. Ramalho, A.D. Corrêa, I.R. Guimarães, Environ. Sci. Pollut. R. 26, 15973 (2019)

  33. 33.

    Z. Li, X. Meng, Z. Zhang, Mater. Res. Bull. 111, 238 (2019)

  34. 34.

    J. Zhang, W. Li, W. Zhu, P. Qin, M. Lu, X. Zhang, Y. Miao, Z. Cai, Chem. Commun. 55, 10019 (2019)

  35. 35.

    T.-Y. Lin, D.-H. Chen, RSC Adv. 4, 29357 (2014)

  36. 36.

    R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang, Ind. Eng. Chem. Res. 52, 14297 (2013)

  37. 37.

    S. Wang, H. Sun, H.M. Ang, M.O. Tadé, Chem. Eng. J. 226, 336 (2013)

  38. 38.

    S. Damirchi, A.K.K. Maliheh, T. Heidari, Z. Es'haghi, M. Chamsaz, Spectrochim. Acta A 206, 232 (2019)

  39. 39.

    R.M.Z. Kakhki, S. Heydari, Arab. J. Chem. 7, 1086 (2014)

  40. 40.

    H. Tavallali, M. Ostovar, Int. J. Chemtech. Res. 1, 199 (2009)

Download references

Acknowledgements

The financial support from the University of Birjand is gratefully acknowledged.

Author information

Correspondence to Rouhollah Khani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khani, R., Irani, M. A reusable reduced graphene oxide-cobalt oxide nanocomposite with excellent yield as adsorbent for determination trace-level of brilliant green in environmental water samples. Res Chem Intermed (2020) doi:10.1007/s11164-020-04083-1

Download citation

Keywords

  • Microsolid phase extraction
  • Magnetic nanocomposite
  • Central composite design
  • Graphene
  • Brilliant green
  • Environmental water samples