Advertisement

Efficient valorization of biomass-derived furfuryl alcohol to butyl levulinate using a facile lignin-based carbonaceous acid

  • Xin Yu
  • Lincai PengEmail author
  • Qiuyu Pu
  • Ruili Tao
  • Xueying Gao
  • Liang He
  • Junhua Zhang
Article
  • 16 Downloads

Abstract

The preparation and application of biorenewable carbon-based catalyst are attracting increasingly attention in the field of green and sustainable chemistry. Here, a facile and low-cost lignosulfonate-based carbonaceous solid acid (LSS) was availably prepared via directly sulfonating lignosulfonate that was from sulfite pulping industry, and used to catalyze biomass-derived furfuryl alcohol to yield versatile butyl levulinate. The fabrication and properties of LSS were highly sensitive to the sulfonation conditions (i.e., lignosulfonate-to-H2SO4 ratio and temperature). The physicochemical properties of the as-prepared LSS were well characterized using BET surface area, acid–base titration, SEM, XRD, FT-IR, XPS, and TGA techniques. The LSS contained –SO3H, –COOH and phenolic –OH groups and was ideal to perform the reaction of furfuryl alcohol with n-butanol to obtain butyl levulinate in yield higher than 95% at 110 °C for 8 h with catalyst dosage of 15 g/L. Meanwhile, the catalyst deactivated increasingly with a recycle number that was attributed to the adsorption of formed polymeric by-products on the active catalyst sites, and the slightly deactivated catalyst after plain sulfonation treatment was found to remain active with an almost unchanged product yield in consecutive cycles. This work highlights an economic, eco-friendly, sustainable and promising protocol for catalytic upgrading of bio-based compounds.

Keywords

Biomass valorization Lignosulfonate Carbonaceous solid acid Furfuryl alcohol Butyl levulinate 

Notes

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (21566019) and the National Undergraduate Training Program for Innovation and Entrepreneurship of China (201810674018).

References

  1. 1.
    S. Laurichesse, L. Avérous, Prog. Polym. Sci. 39, 1266 (2014)CrossRefGoogle Scholar
  2. 2.
    P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santos, Prog. Mater Sci. 93, 233 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Renew. Sustain. Energ. Rev. 21, 506 (2013)CrossRefGoogle Scholar
  4. 4.
    M.P. Pandey, C.S. Kim, Chem. Eng. Technol. 34, 29 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Panzarasa, A. Osypova, J. Ribera, F.W.M.R. Schwarze, F. Quasso, G. Consolati, J. Polym. Environ. 26, 4293 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Guo, Z.L. Xiu, Z.X. Liang, Appl. Energy 98, 47 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Liang, Y. Song, C. Huang, J. Zhang, B. Chen, Catal. Commun. 40, 93 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Hu, F. Jiang, Y.L. Hsieh, A.C.S. Sustain, Chem. Eng. 3, 2566 (2015)Google Scholar
  9. 9.
    F.L. Pua, Z. Fang, S. Zakaria, F. Guo, C.H. Chia, Biotechnol. Biofuels 4, 56 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    S. Kang, J. Ye, Y. Zhang, J. Chang, RSC Adv. 3, 7360 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Hu, X. Tang, Z. Wu, L. Lin, J. Xu, N. Xu, B. Dai, Chem. Eng. J. 263, 299 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Huang, J. Luo, Z. Fang, H. Li, Appl. Catal. B: Environ. 190, 103 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Zhu, L. Gan, B. Li, X. Yang, Korean J. Chem. Eng. 34, 110 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Yu, L. Peng, X. Gao, L. He, K. Chen, RSC Adv. 8, 15762 (2018)CrossRefGoogle Scholar
  15. 15.
    R.J.A. Gosselink, E.D. Jong, B. Guran, A. Abächerli, Ind. Crop. Prod. 20, 121 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Xie, Z.K. Zhao, Q. Wang, Chemsuschem 5, 901 (2012)PubMedCrossRefGoogle Scholar
  17. 17.
    C. Wu, W. Chen, L. Zhong, X. Peng, R. Sun, J. Fang, S. Zheng, J. Agric. Food Chem. 62, 7430 (2014)PubMedCrossRefGoogle Scholar
  18. 18.
    W. Chen, X. Peng, L. Zhong, Y. Li, R. Sun, A.C.S. Sustain, Chem. Eng. 3, 1366 (2015)Google Scholar
  19. 19.
    C.H. Zhou, X. Xia, C.X. Lin, D.S. Tong, J. Beltramini, Chem. Soc. Rev. 40, 5588 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    H. Li, Z. Fang, R.L.J. Smith, S. Yang, Prog. Energ. Combust. 55, 98 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Sudarsanam, R. Zhong, S. Van den Bosch, S.M. Coman, V.I. Parvulescu, B.F. Sels, Chem. Soc. Rev. 47, 8349 (2018)PubMedCrossRefGoogle Scholar
  22. 22.
    C.P. Demma, R. Ciriminna, N.R. Shiju, G. Rothenberg, M. Pagliaro, Chemsuschem 7, 835 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Ahmad, M.I. Alam, K.K. Pant, M.A. Haider, Green Chem. 18, 4804 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Joshi, B.R. Moser, J. Toler, W.F. Smith, T. Walker, Biomass Bioenergy 35, 3262 (2011)CrossRefGoogle Scholar
  25. 25.
    D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Green Chem. 15, 584 (2013)CrossRefGoogle Scholar
  26. 26.
    J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Science 327, 1110 (2010)PubMedCrossRefGoogle Scholar
  27. 27.
    A. Démolis, N. Essayem, F. Rataboul, A.C.S. Sustain, Chem. Eng. 2, 1338 (2014)Google Scholar
  28. 28.
    J.P. Lange, W.D. van de Graaf, R.J. Haan, Chemsuschem 2, 437 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    Z. Zhang, K. Dong, Z.K. Zhao, Chemsuschem 4, 112 (2011)PubMedCrossRefGoogle Scholar
  30. 30.
    P. Neves, S. Lima, M. Pillinger, S.M. Rocha, J. Rocha, A.A. Valente, Catal. Today 218, 76 (2013)CrossRefGoogle Scholar
  31. 31.
    D. Zhao, P. Prinsen, Y. Wang, W. Ouyang, F. Delbecq, C. Len, R. Luque, A.C.S. Sustain, Chem. Eng. 6, 6901 (2018)Google Scholar
  32. 32.
    P.A. Russo, M.M. Antunes, P. Neves, P.V. Wiper, E. Fazio, F. Neri, F. Barreca, L. Mafra, M. Pillinger, N. Pinna, A.A. Valente, J. Mater. Chem. A 2, 11813 (2014)CrossRefGoogle Scholar
  33. 33.
    B. Lu, S. An, D. Song, F. Su, X. Yang, Y. Guo, Green Chem. 17, 1767 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Neves, P.A. Russo, A. Fernandes, M.M. Antunes, J. Farinha, M. Pillinger, M.F. Ribeiro, J.E. Castanheiro, A.A. Valente, Appl. Catal. A: Gen. 487, 148 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Zhu, C. Chen, Y. Xue, J. Wu, J. Wang, W. Fan, ChemCatChem 6, 3080 (2014)CrossRefGoogle Scholar
  36. 36.
    L.J. Konwar, J. Boro, D. Deka, Renew. Sustain. Energ. Rev. 29, 546 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Wang, W. Xu, J. Ren, X. Liu, G. Lu, Y. Wang, Green Chem. 13, 2678 (2011)CrossRefGoogle Scholar
  38. 38.
    L. Wang, X. Dong, H. Jiang, G. Li, M. Zhang, Bioresour. Technol. 158, 392 (2014)PubMedCrossRefGoogle Scholar
  39. 39.
    L. Hu, G. Zhao, X. Tang, Z. Wu, J. Xu, L. Lin, S. Liu, Bioresour. Technol. 148, 501 (2013)PubMedCrossRefGoogle Scholar
  40. 40.
    K. Nakajima, M. Hara, S. Hayashi, J. Am. Ceram. Soc. 90, 3725 (2007)Google Scholar
  41. 41.
    K. Nakajima, M. Hara, ACS Catal. 2, 1296 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130, 12787 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    G. Chen, B. Fang, Bioresour. Technol. 102, 2635 (2011)PubMedCrossRefGoogle Scholar
  44. 44.
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Solid State Sci. 12, 1029 (2010)CrossRefGoogle Scholar
  45. 45.
    S. Kang, X. Li, J. Fan, J. Chang, Ind. Eng. Chem. Res. 51, 9023 (2012)CrossRefGoogle Scholar
  46. 46.
    W.J. Liu, K. Tian, H. Jiang, H.Q. Yu, Sci. Rep. 3, 2419 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    T. Chen, L. Peng, X. Yu, L. He, Fuel 219, 344 (2018)CrossRefGoogle Scholar
  48. 48.
    X. Dong, Y. Jiang, W. Shan, M. Zhang, RSC Adv. 6, 17118 (2016)CrossRefGoogle Scholar
  49. 49.
    G. Wang, Z. Zhang, L. Song, Green Chem. 16, 1436 (2014)CrossRefGoogle Scholar
  50. 50.
    S.S. Enumula, K.S. Koppadi, V. Ramesh, B. Gurram, D.R. Burri, S.R.R. Kamaraju, Sustain. Energ. Fuels 1, 644 (2017)CrossRefGoogle Scholar
  51. 51.
    E.S. Sankar, K.S. Reddy, Y. Jyothi, B.D. Raju, K.S.R. Rao, Catal. Lett. 147, 2807 (2017)CrossRefGoogle Scholar
  52. 52.
    J.N. Appaturi, M.R. Johan, R.J. Ramalingam, H.A. Al-Lohedan, J.J. Vijaya, RSC Adv. 7, 55206 (2017)CrossRefGoogle Scholar
  53. 53.
    B.S. Rao, P.K. Kumari, D. Dhanalakshmi, N. Lingaiah, Mol. Catal. 427, 80 (2017)CrossRefGoogle Scholar
  54. 54.
    Z. Mohammadbagheri, A.N. Chermahini, J. Ind. Eng. Chem. 62, 401 (2018)CrossRefGoogle Scholar
  55. 55.
    R. Bringué, E. Ramírez, M. Iborra, J. Tejero, F. Cunill, Fuel 257, 116010 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xin Yu
    • 1
  • Lincai Peng
    • 1
    Email author
  • Qiuyu Pu
    • 1
  • Ruili Tao
    • 1
  • Xueying Gao
    • 1
  • Liang He
    • 1
  • Junhua Zhang
    • 1
  1. 1.BiomassChem Group, Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations