Advertisement

Preparation and photocatalytic properties of biomorphic hierarchical WO3 based on bionic rice hull

  • Yingzi LinEmail author
  • Yang Zhu
  • Ang Li
  • Tianmo Wu
  • Yingji Song
Article
  • 10 Downloads

Abstract

In this study, biomorphic WO3-Cx nanomaterial was successfully prepared with rice hull as biological templates. The structure and morphology of the nanomaterial showed that WO3-Cx efficiently copied the original pore-shaped appearance of the rice hull with a specific surface area of 199.18 m2/g. Results of UV–Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy showed that the carbon element of the rice hull biological template promoted the light response range of WO3-Cx, inhibiting the hole–electron composite. The effects of biomorphic WO3-Cx and commercially available WO3 combined with sunlight on the photocatalytic degradation of methylene blue (MB) were studied. Results showed that the degradation rate of biomorphic WO3-Cx to MB solution was higher than that of commercially available WO3 for 44%. WO3-Cx with a concentration of 0.05 mol/L and dose of 0.5 g/L had remarkable degradation activity to MB (10 mg/L). In addition, the quasi-first-order kinetic model could well fit the degradation process with a dynamic constant of 0.0246 min−1.

Keywords

Rice hull Tungsten trioxide Photocatalysis Biological template 

Notes

Acknowledgements

Our work was supported by the National Natural Science Foundation of China (Grant No. 51778267), the Jilin Province Science and Technology Department Project (No. 20190201113JC), the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2012ZX07408001), the Jilin Provincial Department of Ecology and Environment Project (No. 2019-15), the Jilin Provincial Education Department Project (Project No. JJKH 20180576KJ), and the Education Department of Jilin Province Scientific and Technological Research Project (No. 2015279).

References

  1. 1.
    J. Bell, C.A. Buckley, Water SA 29, 129 (2013)Google Scholar
  2. 2.
    G.M. Zeng, M. Chen, Z.T. Zeng, Science 340, 1403 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A.C.K. Yip, Nano Res. 12, 995 (2019)CrossRefGoogle Scholar
  4. 4.
    P.A. Carneiro, G.A. Umbuzeiro, G.A. Oliveira, D.P. Zanoni, J. Hazard. Mater. 174, 694 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    M.S. Nas, E. Kuyuldar, B. Demirkan, M.H. Calimli, O. Demirbas, F. Sen. Sci. Rep-uk. 9, 1 (2019) CrossRefGoogle Scholar
  6. 6.
    R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Liq. 221, 1029 (2016)CrossRefGoogle Scholar
  7. 7.
    F. Sen, O. Demirbas, M.H. Calimli, A. Aygun, M.H. Alma, M.S. Nas, Appl. Water Sci. 8, 2016 (2018)CrossRefGoogle Scholar
  8. 8.
    M.K. Wang, N. Chamberland, L. Breau, J.E. Moser, R. Humphry, B. Marsan, S.M. Zakeeruddin, M, Gratzel. Nat. Chem. 2, 385 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    R. Han, D. Ding, Y. Xu, Bioresour. Technol. 39, 2938 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Oller, J.A. Malato, Sci. Total Environ. 409, 4141 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    J.N. Muhd, S. Bagheri, A.H. Bee, Sci. World J. 3383, 1 (2014)Google Scholar
  12. 12.
    M.A. Karimi, A.H. Mehrjardi, A.A. Kabir, Res. Chem. Intermed. 41, 6157 (2015)CrossRefGoogle Scholar
  13. 13.
    D. An, L. Yan, X. Lian, Colloid Surface A. 447, 81 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Natarajan, H.C. Bajaj, R.J., Tayade, J. Environ. Sci. 65, 201 (2018)CrossRefGoogle Scholar
  15. 15.
    D. Cao, Y. Wang, X. Zhao, Curr. Opin. Green Sustain. Chem. 6, 78 (2017)CrossRefGoogle Scholar
  16. 16.
    C.K. Sumesh, K. Parekh, Pramana J. Phys. 92, 87 (2019)CrossRefGoogle Scholar
  17. 17.
    M.A. Ahmed, E.E. Katori, Z.H. Charni, J. Alloy. Compd. 553, 19 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125, 277 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Vatanparast, M.T. Taghizadeh, J. Mater. Sci.: Mater. Electron. 27, 54 (2016)Google Scholar
  20. 20.
    A. Noua, H. Farh, R. Guemini, O. Zaoui, T.D. Ounis, H. Houadsi, H. Aounalah, J. Nano Res. SW 56, 152 (2019)CrossRefGoogle Scholar
  21. 21.
    W.Y. Zheng, Sens. World 15, 6 (2009)Google Scholar
  22. 22.
    D.Y. Lin, Y.T. Zhao, Q.P. Shi, Mater. Rev. 19, 28 (2005)Google Scholar
  23. 23.
    Y. Li, L. Wang, J.H. Zhao, Heilongjiang Sci. 1, 32 (2012)Google Scholar
  24. 24.
    L.J. Xu, Jiangsu Sichou 2, 6 (2006)Google Scholar
  25. 25.
    M. Elices, G.R. Plaza, J. Perez-Rigueiro, J. Mech. Behav. Biomed. 4, 658 (2011)CrossRefGoogle Scholar
  26. 26.
    T.T. Duan, W. Zheng, Y.S. Huang, J. Jinan Univ. 38, 288 (2017)Google Scholar
  27. 27.
    X.M. Wang, J. New. 5, 37 (2015)Google Scholar
  28. 28.
    J.S. Wang, S.N. Yao, Chinese J. Mater. Res. 14, 337 (2000)Google Scholar
  29. 29.
    X.H. Hu, Q.R. Li, L.L. Gao, Mater. Rev. 31, 21 (2017)Google Scholar
  30. 30.
    V. Valtchev, M. Smaihi, A.C. Faust, Stud. Surf. Sci. Catal. 16, 1350 (2004)Google Scholar
  31. 31.
    J. You, G. Gao, J. Inorg. Organomet. TP 13, 1417 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Cook, P.L. Timms, Angew. Chem. Int. Edit. 42, 557 (2010)CrossRefGoogle Scholar
  33. 33.
    X. Wang, W. Gao, S. Xu, Chem. Eng. J. 210, 585 (2012)Google Scholar
  34. 34.
    X. Gao, Y.T. Liu, Y. Wang, Chem. Bull. 82, 63 (2019)Google Scholar
  35. 35.
    C. Lian, C.B. Li, G.Z. Zhao, New Chem. Mater. 46, 202 (2018)Google Scholar
  36. 36.
    R.C. Pullar, P. Marques, J. Amaral, Mater. Des. 82, 297 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.K. Liao, L.X. Li, S.S. Fan, J. Agro Environ. Sci. 38, 1130 (2019)Google Scholar
  38. 38.
    S.X. Ren, Jilin University (2009)Google Scholar
  39. 39.
    B.Q. Cai, X.X. Chen, M.J. Huang, Pro. Agric. Pro. 4, 55 (2010)Google Scholar
  40. 40.
    W. Wang, H. Chen, J.J. Fang, M. Lai, Appl. Surf. Sci. 467, 1187 (2019)CrossRefGoogle Scholar
  41. 41.
    A. Pastor, J. Balbuena, M.C. Yusta, I. Pavlovic, L. Sanchez, Chem. Eng. J. 368, 659 (2019)Google Scholar
  42. 42.
    P. Huang, J.F. Luan, RSC Adv. 9, 19930 (2019)CrossRefGoogle Scholar
  43. 43.
    H. Chen, C. Huang, L. Zhao, X. He, W.X. Li, W. Fang, G.H. Wang, Photochem. Photobiol. 94, 12 (2017)CrossRefGoogle Scholar
  44. 44.
    F.Y. Han, X.S. Xu, Y.S. Fu, X. Wang, Nano 6, 1850067 (2018)CrossRefGoogle Scholar
  45. 45.
    D. Yang, T. Fan, H. Zhou, J. Ding, D. Zhang, PLoS One. 6, e24788 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    S.S. Patil, V.M. Shined, Environ. Sci. Tenchnol. 22, 1160 (1988)CrossRefGoogle Scholar
  47. 47.
    A. Leey, R. Hansi, Appl. Surf. Sci. 440, 1244 (2018)CrossRefGoogle Scholar
  48. 48.
    K. Wetchakun, T. Samerjai, N. TamaeKong, Sens. Actuators, B 160, 580 (2011)CrossRefGoogle Scholar
  49. 49.
    M.B. Tahir, M. Sagir, M. Zubair, M. RAfique, I. Abbas, M. Shakil, I. Khan, S. Afsheen, A. Hasan, A. Ahmed, J Inorg. Organomet. P 28, 1107 (2018)CrossRefGoogle Scholar
  50. 50.
    D. Yang, B. Du, Y. Yan, Acs. Appl. Mater. Inter. 6, 2377 (2014) CrossRefGoogle Scholar
  51. 51.
    R. Gupta, Y.Y. Lee, Bioresour. Technol. 101, 8185 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    F. Wang, C. Li, J.C. Yu, Sep. Purif. Technol. 91, 103 (2012)CrossRefGoogle Scholar
  53. 53.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    X.Y. Zhang, Y.J. Deng, J.K. Liu, Y. Lu, X.H. Yang, J. Colloid Interface Sci. 459, 1 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    M.W. Xiao, L.S. Wang, X.J. Huang, J. Alloy. Compd. 470, 486 (2009)CrossRefGoogle Scholar
  56. 56.
    M.A. Mohamed, W.N.W. Salleh, J. Jaafar, Z.A.M. Hir, M.S. Rosmi, M.A. Mutalib, A.F. Ismail, M. Tanemura, Carbohydr. Polym. 146, 166 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Y. Li, Z.M. Liu, Y.C. Wu, J.T. Chen, J.Y. Zhao, F.M. Jin, P. Na, Appl. Catal. B Environ. 224, 508 (2018)CrossRefGoogle Scholar
  58. 58.
    Y.Y. Li, S.B. Cao, A. Zhang, C. Zhang, T. Qu, Y.B. Zhao, A.H. Chen, Appl. Surf. Sci. 445, 350 (2018)CrossRefGoogle Scholar
  59. 59.
    X.Y. Zhang, Y. Zhang, L.G. Zhou, X.K. Li, X.Y. Guo, J. Porous Mater. 25, 571 (2018)CrossRefGoogle Scholar
  60. 60.
    Z. Zhang, L.H. Lu, Z.Z. Lv, Y. Chen, H.Y. Jin, S. Hou, L.X. Qiu, L.M. Duan, J.H. Liu, K. Dai, Appl. Catal. B Environ. 232, 384 (2018)CrossRefGoogle Scholar
  61. 61.
    X.D. Yu, X.C. Lin, W. Feng, W.G. Li, Appl. Surf. Sci. 465, 223 (2019)CrossRefGoogle Scholar
  62. 62.
    Y.G. Tan, Z. Shu, J. Zhou, T.T. Li, W.B. Wang, Z.L. Zhao, Appl. Catal. B Environ. 230, 260 (2018)CrossRefGoogle Scholar
  63. 63.
    N. Mathur, P. Bhatnagar, J. Environ. Biol. 28, 123 (2007)PubMedPubMedCentralGoogle Scholar
  64. 64.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  65. 65.
    P. Basnet, Y.P. Zhao, J. Mater. Chem. A 2, 911 (2014)CrossRefGoogle Scholar
  66. 66.
    S. Jeon, K.J. Yong, J. Mater. Chem. 50, 10146 (2010)CrossRefGoogle Scholar
  67. 67.
    F. Wang, C.H. Li, J.C. Yu, Sep. Purif. Technol. 91, 103 (2012)CrossRefGoogle Scholar
  68. 68.
    J.Y. Luo, Z. Cao, F. Chen, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Appl. Surf. Sci. 287, 270 (2013)CrossRefGoogle Scholar
  69. 69.
    J. Zhu, S.L. Wang, S.H. Xie, H.X. Li, Chem. Commun. 47, 4403 (2011)CrossRefGoogle Scholar
  70. 70.
    W. Morales, M. Cason, O. Aina, N.R. Tacconi, K. Rajeshwar, J. Am. Chem. Soc. 130, 6318 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    H. Chen, U. Wuhan, Sci. Technol. (2015)Google Scholar
  72. 72.
    Y.T. Huang, Z.P. Ying, J.X. Zheng, S.G. Zhuang, L. Liu, W. Feng, Chem. J. Chin. Univ. 9, 2031 (2018)Google Scholar
  73. 73.
    X.Q. Gao, X.T. Su, C. Yang, F. Xiao, J.D. Wang, X.D. Cao, S.J. Wang, L. Zhang, Sens. Actuators B Chem. 181, 537 (2013)CrossRefGoogle Scholar
  74. 74.
    A.A. Ismail, M. Faisal, A.A. Haddad, J. Environ. Sci. 664, 28 (2018)Google Scholar
  75. 75.
    S.A. Singh, G. Madrs, Sep. Purif. Technol. 105, 79 (2013)CrossRefGoogle Scholar
  76. 76.
    A. Fujii, Z.C. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojima, Surf. Coat. Technol. 271, 251 (2015)CrossRefGoogle Scholar
  77. 77.
    Z.G. Shen, Z.Y. Zhao, J.W. Qian, Z.J. Peng, X.L. Fu, J. Mater. Res. 31, 1065 (2016)CrossRefGoogle Scholar
  78. 78.
    Y. Zhu, D. Xu, M. Meng, J. Mater. Sci. 50, 1594 (2015)CrossRefGoogle Scholar
  79. 79.
    B. Liu, G. Chen, C. Zhou, Z.Y. Shen, R.C. Jin, J.X. Sun, Dalton Trans. 40, 6751 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Municipal and Environmental EngineeringJilin Jianzhu UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Songliao Aquatic EnvironmentMinistry of Education, Jilin Jianzhu UniversityChangchunPeople’s Republic of China
  3. 3.Basic Science DivisionJilin Jianzhu UniversityChangchunPeople’s Republic of China

Personalised recommendations